
1

Visit Notes Analysis Module

Developer’s Guide

Kavya Katipally, Ryan Eshleman

Advisor: Dr. Barry Levine

2

TABLE OF CONTENTS

1. Overview………..4

2. System Design……..5

2.1 SofaDocument data model……………………………………………………………………………………………………5

2.2 Named Entity Recognition Algorithm and Implementation…………………………………………………..7

2.3 Visit Note Processing with Aspect Oriented Programming…………………………………………………….9

3. Application Programming Interface……………………………………………………………………………………………………10

3.1 Code Snippets……..10

3.2 Javadoc Excerpts………13

3.2.1 NLPService……..13

3.2.2 DocumentTagger…………………………………………………………………………………………………15

3.2.3 SofaDocument…………………………………………………………………………………………………….16

3.2.4 SofaText……18

3.2.5 SofaTextMention………………………………………………………………………………………………...20

3.2.6 SofaTextMentionConcept…………………………………………………………………………………….22

3.2.7 SofaDocumentUI………………………………………………………………………………………………….24

3.2.8 SofaTextMentionUI……………………………………………………………………………………………..26

4. REST web services…….....28

4.1 SofaDocument Resource……………………………………………………………………………………………………..28

4.2 Word Resource……30

4.3 SofaTextMentionUI Resource……………………………………………………………………………………………..32

4.4 SofaDocumentUI Resource………………………………………………………………………………………………….35

5. User Interface development……39

5.1 AngularJS set up……….39

3

5.2 AngularJS folder structure……………………………………………………………………………………………….....40

5.3 AngularJS controllers……..41

5.4 AngularJS directives and D3.js……………………………………………………………………………………………..42

5.5 AngularJS filters and services………………………………………………………………………………………………45

6. Package Structure………..46

4

1. Overview

The Visit Notes Analysis module was built to provide Named Entity Recognition (NER) capabilities to

OpenMRS to help the system extract more information from Visit Note text as well as other potential

sources of unstructured text.

Part of the challenge of enhancing OpenMRS’s ability to analyze plain text is to help the user gain the

most value out of the analysis. Our module provides one use, summarizing and visualizing the

information in a patient note, however we understand that there are many possible uses of NER.

It is with this understanding that we write the Developer’s Guide in order to provide future developers

with the background necessary to either continue and refine the development of this module, or

leverage the NER API provided by this module in order to build new and better projects.

In this guide you will find five sections:

1. System Design: A high level description of the three main components working under the hood to

carry out the module’s NER functions.

2. Application Programming Interface: Details and examples of the main Java classes used to support

the NER functionality.

3. REST web services: Details of new REST end points created for this module.

4. User Interface development: AngularJS has been used in the front end. Some details regarding the

front end code are shared in this section.

5. Package Structure: A diagram of the package structure with brief descriptions of each package.

5

 2. System Design

 There are three major system design components that a developer should be familiar with in order to

continue development with this module. Those components are:

1. The SofaDocument data model

2. The Named Entity Recognition algorithm

3. Processing Visit Notes with Aspect Oriented Programming.

2.1 SofaDocument data model

The module adds four database tables to the OpenMRS data model corresponding to the SofaDocument

data hierarchy (‘sofa’ is shorthand for Subject of Analysis). The data stored in these tables is accessible

via the service layer through the service class NLPService. The data model is shown in figure 1.

 Figure 1: SofaDocument data model

6

This data model forms a hierarchical structure used to maintain the results of the analysis of a Visit

Note. Roughly the tables form this correspondence:

 sofa_document => Visit Note

 sofatext => sentence in Visit Note

 sofatext_mention => entity identified in a sentence

sofatext_mention_concept => corresponding OpenMRS Concept for the entity, if it

exists. Empty otherwise.

Leveraging the NLPService class and Hibernate ORM mappings (www.hibernate.org), we can

read sofa_documents from the database into Java Objects. The corresponding data

hierarchy of Java Objects is shown in figure 2.

 Figure 2: SofaDocument data hierarchy

One SofaDocument can contain many SofaText objects. One SofaText can contain many

SofaTextMention objects. One SofaTextMention can contain a SofaTextMentionConcept object.

 A concrete example of this hierarchy is shown in figure 3.

7

 Figure 3: concrete example of SofaDocument data hierarchy

2.2 Named Entity Recognition Algorithm and Implementation

 The Named Entity Recognition algorithm takes place in two steps. The first step uses the concept class

mappings described in section 3.1 to identify concepts and their synonyms within the text. The second

step uses the machine learning algorithm Conditional Random Fields provided by BANNER

(banner.sourceforge.com) to find entities that may not be explicitly noted in the Concept Dictionary.

Figure 4 diagrams this process. BANNER was chosen for this module after it showed superior

performance when compared with several other open source NER systems.

8

 Figure 4: Named Entity Recognition Algorithm

9

2.3 Visit Note Processing with Aspect Oriented Programming

Visit notes are analyzed as they are submitted to the system via Spring’s support for Aspect

Oriented Programming (https://wiki.openmrs.org/display/docs/OpenMRS+AOP). When a user submits

a visit note through the Visit Notes page, the VisitNoteAdvice class interrupts the control flow and

processes the text of the Visit Note, saving the results for future presentation. Figure 5 shows this

process.

 Figure 5: AOP processing of visit notes

These three components - the data model, the algorithm, and the control flow of capturing a

Visit Note make up the foundation of the module.

10

3. Application Programming Interface

There are three main components of the API a developer can use to extend or build on top of this

module. Those components are the NLPService class for loading/storing data objects, the

SofaDocument and related classes for manipulating the data and the DocumentTagger class for

performing NER on strings of text. Below are brief descriptions of each component followed by

illustrative code snippets. Finally we provide excerpts from the JavaDocs for the related classes.

NLPService class: This service manages storing and retrieving SofaDocument objects and related data in

the database.

SofaDocument, SofaText, SofaTextMention and SofaTextMentionConcept classes:

Objects of these classes are used to manipulate the text data and annotations.

DocumentTagger class: This class provides a simple interface to the developer to execute the NER

functionality of the module.

3.1 Code Snippets

The following are four code snippets that illustrate how to use the core API functions.

1. Using the DocumentTagger class to annotate a text string and print out all “problem” entities found

in that string:

11

 Figure 6: Tag text with DocumentTagger

2. Tag a string of text and save it to the database using the NLPService class.

 Figure 7: Tag a string, then save it to the database using NLPService

12

 3. Retrieve all SofaDocuments for patient whose patient_id is 100, and print out the text of the

documents.

 Figure 8: Retrieve SofaDocument objects associated with a patient, then print the text

4. Internally to the DocumentTagger object, code from the BANNER library is being executed to

contribute annotations to the text. Here, tagger is an instance of the BANNER CRFTagger class,

tokenizer is an instance of the BANNER Tokenizer class, Sentence and Mention are also classes from the

BANNER library. Figure 9 gives this example of the CRFTagger tagging a sentence, the result is a list of

Mention objects.

 Figure 9: example of BANNER library code

13

3.2 Javadoc Excerpts

Note: Many of these classes reference a banner.tagging.Mention object. This object is part of the result

of the NER tagging performed by BANNER. It contains information like mention text and mention type

that are used in many of the following classes.

3.2.1 NLPService

14

 Figure 10: Javadoc excerpts for NLPService

15

3.2.2 DocumentTagger

 Figure 11: Javadoc excerpts for DocumentTagger

16

3.2.3 SofaDocument

SofaDocument objects are created as a result of the DocumentTagger.tag() method. When a visit note is

saved by OpenMRS an encounter is generated/saved along with it. Visit Notes are captured and

analyzed via AOP when EncounterService.saveEncounter() is called. The encounter associated with this

visit note is recorded in the SofaDocument.

17

 Figure 12: Javadoc excerpts for SofaDocument class

18

3.2.4 SofaText

19

 Figure 13: Javadoc excerpts for SofaText class

20

3.2.5 SofaTextMention

The NER algorithm executed in DocumentTagger.tag() may find multiple OpenMRS Concepts in a single

mention. This is a consequence of overlapping concept names/synonyms in the Concept Dictionary.

Instead of forcing the algorithm to choose one Concept, we record them all.

21

 Figure 14: Javadoc excerpts for SofaTextMention class

22

3.2.6 SofaTextMentionConcept

23

 Figure 15: Javadoc excerpts for SofaTextMentionConcept class

24

3.2.7 SofaDocumentUI

25

 Figure 16: Javadoc excerpts for SofaDocumentUI class

26

3.2.8 SofaTextMentionUI

27

 Figure 17: Javadoc excerpts for SofaTextMentionUI class

28

4. REST web services

Four REST resources have been added to the new version of Visit Notes Analysis module.

4.1 SofaDocument Resource

The SofaDocument Resource is used to populate two sections of the UI. On page 1, it is used to populate

the D3 visualization of all visit notes for a given patient. An example of the REST call:

/openmrs/ws/rest/v1/bannerprototype/sofadocument?patient=0586cbb8-56f1-4621-9ea6-

4d53cb44884c

Here, all visit dates are retrieved for patient with id: 0586cbb8-56f1-4621-9ea6-4d53cb44884c

A screenshot of the test page for this REST call is displayed:

Figure 18: REST test page – Get all SofaDocuments for a given patient

29

The SofadocumentResource calls NLPService’s getSofaDocumentsByPatient function, which in turn calls

the dao.getSofaDocumentsByPatient function. Code from SofadocumentResource:

@Override

 protected PageableResult doSearch(RequestContext context) {

 Patient patient = context.getParameter("patient") != null ?

Context.getPatientService().getPatientByUuid(

 context.getParameter("patient")) : null;

 return new

NeedsPaging<SofaDocument>(Context.getService(NLPService.class).getSofaDocumentsByPati

ent(patient),

 context);

 }

The SofaDocument Resource is also used to populate Page 2’s Visit Note Rendering section. An example

REST call which specifies the UUID of the SofaDocument for which the text is to be retrieved:

/openmrs/ws/rest/v1/bannerprototype/sofadocument/da75e3ae-a71c-40fa-af67-5ee2eba8e867

A screenshot of the test page for this REST call:

30

Figure 19: REST test page – Get SofaDocument for a given UUID

The SofadocumentResource calls NLPService’s getSofaDocumentByUuid function, which in turn calls the

DAO’s getSofaDocumentByUuid function.

@Override

 public SofaDocument getByUniqueId(String uuid) {

 return Context.getService(NLPService.class).getSofaDocumentByUuid(uuid);

 }

4.2 Word Resource

The WordResource is used to populate the word cloud on page 1 based on constraints such as the start

and end dates, the patient ID, the entity type selected and the number of terms to display in the word

cloud. An example REST call is:

31

/openmrs/ws/rest/v1/bannerprototype/word?patient=0586cbb8-56f1-4621-9ea6-

4d53cb44884c&startDate=2015-05-07&endDate=2017-05-07&entityType=All&numTerms=5

Here is a screenshot of the REST test page for this end point:

Figure 20: REST test page – Get words for a given patient, start and end dates, entityType, numOfTerms

WordResource calls NLPService’s getSofaDocumentsByPatientAndDateRange method to get all

SofaDocuments for a given patient, start and end dates. Depending upon the entity type specified by the

user, all SofaTextMentions are added to a Word Cloud and the top SofaTextMentions are retrieved,

limited by the number of terms specified by the user. Here’s the code from the WordResource class:

@Override

 protected PageableResult doSearch(RequestContext context) {

 Patient patient = context.getParameter("patient") != null ?

Context.getPatientService().getPatientByUuid(

 context.getParameter("patient")) : null;

 Date startDate = context.getParameter("startDate") != null ? (Date)

ConversionUtil.convert(

 context.getParameter("startDate"), Date.class) : null;

32

 Date endDate = context.getParameter("endDate") != null ? (Date)

ConversionUtil.convert(

 context.getParameter("endDate"), Date.class) : null;

 String entityType = context.getParameter("entityType");

 Integer numTerms = Integer.parseInt(context.getParameter("numTerms"));

 WordCloud wordcloud = new WordCloud();

 List<SofaDocument> allSofaDocuments =

Context.getService(NLPService.class).getSofaDocumentsByPatientAndDateRange(

 patient, startDate, endDate);

 if (entityType.equals("Problems")) {

 for (SofaDocument sd : allSofaDocuments) {

 addToCloud(wordcloud, sd.getProblemMentions());

 }

 } else if (entityType.equals("Treatments")) {

 for (SofaDocument sd : allSofaDocuments) {

 addToCloud(wordcloud, sd.getTreatmentMentions());

 }

 } else if (entityType.equals("Tests")) {

 for (SofaDocument sd : allSofaDocuments) {

 addToCloud(wordcloud, sd.getTestMentions());

 }

 } else {

 for (SofaDocument sd : allSofaDocuments) {

 addToCloud(wordcloud, sd.getAllMentions());

 }

 }

 List<Word> wordList = wordcloud.getTopWordsShuffled(numTerms);

 return new NeedsPaging<Word>(wordList, context);

 }

4.3 SofaTextMentionUI Resource

For page 2’s heat map and Visit Note List sections, two new classes were created. Javadocs for these

classes were shared in the previous section. One is the SofaDocumentUI, which is analogous to a vertical

bar on the heat map corresponding to a single note. It has the instance variables – UUID, patient,

dateCreated, mentionCount, diagnosis, provider, location, problemWordList, treatmentWordList and

33

testWordList. The diagnosis, provider, location variables are used to populate the tooltip on the heat

map for the particular note. The mentionCount is used to show the frequency of occurrence of the

mention in this note. The problemWordList, treatmentWordList and testWordList are kept empty for the

heat map since these lists of all mentions are not required on the heat map. They are required in the

Visit Note List section for the filter functionality.

The SofaTextMentionUI object is analogous to a single search term row in the heat map. It has these

instance variables – mentionText, mentionType, relatedTo and dateList. The relatedTo variable is used

to identify the search term to which a term is related, and the dateList variable stores a List of

SofaDocumentUI objects for each SofaTextMentionUI object. These SofaTextMentionUI objects are used

to populate the heat map visualization.

The SofaTextMentionUI REST Resource is used to populate the heat map for given search terms, start

and end dates and patient ID. A sample REST call is -

/openmrs/ws/rest/v1/bannerprototype/sofatextmentionui?patient=0586cbb8-56f1-4621-9ea6-

4d53cb44884c&startDate=2015-04-30&endDate=2017-04-30&searchTerms=end stage liver disease

The test page shows an array of SofaTextMentionUI objects with each one mapping to a dateList, which

is in turn an array of SofaDocumentUI objects.

34

Figure 21: REST test page – Get SofaTextMentionUIs for a given patient, start &end dates, search terms

The SofaTextMentionUI Resource calls NLPService’s getSofaTextMentionUIsByConstraints() method. The

NLPServiceImpl has the business logic for how the heat map gets populated. When the search terms

exceed the limit (for example, 3), it calls the dao.getSofaTextMentionUIsByConstraints(patient,

startDate, endDate, searchTerms) method directly to get the SofaTextMentionUIs to populate the heat

map. On the other hand, if the number of search terms is less than the limit, related terms are to be

displayed on the UI. SofaDocuments for each search term are first retrieved by calling

dao.getSofaDocumentsByConstraints(patient, startDate, endDate, term). The most frequent 5 problems,

5 treatments and 5 tests are retrieved from all SofaDocuments corresponding to a search term. Finally,

the SofaTextMentionUIs which populate each row in the heat map are obtained by calling

dao.getSofaTextMentionUIsByConstraints(patient, startDate, newEndDate, allTopTermsArr).

35

In the code for dao.getSofaTextMentionUIsByConstraints – First, a database query is run which retrieves

the SofaTextMention’s text and type along with all the SofaDocuments in which the mention occurs, and

the UUIDs, dateCreated and encounter IDs for each SofaDocument. Using the encounter ID, we get the

Provider, Location and Diagnosis details for each SofaDocument. A SofaDocumentUI object is

instantiated for each SofaDocument and added to an ArrayList. For each mention, a SofaTextMentionUI

object is instantiated and the dateList is set. Finally, an ArrayList of SofaTextMentionUIs is returned.

4.4 SofaDocumentUI Resource

The SofaDocumentUI Resource is used to make two REST calls – one to populate the Visit Note List for

given search terms and another to populate the Visit Note List for a particular visit date.

An example of the first REST call to populate the Visit Note List for given search terms:

/openmrs/ws/rest/v1/bannerprototype/sofadocumentui?patient=0586cbb8-56f1-4621-9ea6-

4d53cb44884c&startDate=2015-05-03&endDate=2017-05-03&searchTerms=end stage liver

disease&searchTerms=protonix

Here’s a screenshot of the REST test page which shows an array of SofaDocumentUIs, with the

problemWordList populated. The problem, treatment and test wordlists are populated for each

SofaDocumentUI object so that filtering by any problem, treatment or test entity can work on the Visit

Note List.

36

Figure 22: REST test page – Get SofaDocumentUIs for a given patient, start & end dates, search terms

The SofaDocumentUI Resource calls NLPService’s getSofaDocumentUIsByConstraints () method. The

NLPServiceImpl has the business logic for how the Visit Note List gets populated, which is similar to the

logic in the previous section. When the search terms exceed the limit (for example, 3), it calls the

dao.getSofaDocumentUIsByConstraints(patient, startDate, newEndDate, searchTerms) method directly

to get the SofaDocumentUIs to populate the Visit Note List. On the other hand, if the number of search

terms is less than the limit, dates for related terms are also to be displayed on the UI. SofaDocuments

for each search term are first retrieved by calling dao.getSofaDocumentsByConstraints(patient,

startDate, newEndDate, term). The most frequent 5 problems, 5 treatments and 5 tests are retrieved

from all SofaDocuments corresponding to a search term. Finally, the SofaDocumentUIs which populate

each row in the Visit Note List are obtained by calling dao.getSofaDocumentUIsByConstraints(patient,

startDate, newEndDate, allTopTermsArr).

In the code for dao.getSofaDocumentUIsByConstraints – First, a database query is run which retrieves

the UUIDs, dateCreated and encounter IDs for distinct SofaDocuments in which the mentions occur.

Using the encounter ID, we get the Provider, Location and Diagnosis details for each SofaDocument.

37

Lists of Problems, Treatments and Tests that occur in the SofaDocument are added to the

problemWordList, treatmentWordList and testWordList respectively. A SofaDocumentUI object is

instantiated for each SofaDocument and an ArrayList of SofaDocumentUIs is returned.

An example of the second REST end point available on the SofaDocumentUI resource, which can be used

to populate the Visit Note List for a particular visit date (please see Figure 4.5):

/openmrs/ws/rest/v1/bannerprototype/sofadocumentui/07fbb473-7bc2-47b4-a8e4-45d3a4e6289f

A screenshot of the REST test page for this call shows a single SofaDocumentUI object with the

problemWordList, treatmentWordList and testWordList populated.

Figure 23: REST test page – Get SofaDocumentUI for a given SofaDocument UUID

The SofaDocumentUI resource calls NLPService’s getSofaDocumentUIBySofaDocUuid() method which

calls dao.getSofaDocumentUIBySofaDocUuid(). This method queries the database for the dateCreated

and encounter ID of the SofaDocument with the UUID of the date clicked on page 1. Using the

38

encounter ID, we get the Provider, Location and Diagnosis details for the SofaDocument. Lists of

Problems, Treatments and Tests that occur in the SofaDocument are added to the problemWordList,

treatmentWordList and testWordList respectively. A SofaDocumentUI object is instantiated and

returned.

Code from the SofaDocumentUI resource is shown below:

@Override

 public SofaDocumentUI getByUniqueId(String sofaDocUuid) {

 return

Context.getService(NLPService.class).getSofaDocumentUIBySofaDocUuid(sofaDocUuid);

 }

39

5. User interface development

5.1 AngularJS set up

notesNLPng.gsp is set as the view and NotesNLPngPageController is the corresponding controller as part

of the Spring MVC set up in this module. Instead of rendering the GSP server-side, an AngularJS app is

embedded in this GSP. The code from notesNLPng.gsp is shown here:

<body ng-app="visitNotesApp">

 <base href="/"/>

 <div ng-view></div>

 </body>

The ng-app directive specifies the root element of the AngularJS application. The ng-view directive

specifies the location where partial views are to be rendered.

We want to navigate to two separate views, but keep this as a single page application with no page re-

loading, so we use Angular’s ngRoute module. $routeProvider is defined using the config method and it

is used to configure different routes in this application. The default route is also set using the

otherwise() method. Here is a code snippet from app.js:

var visitNotesApp = angular.module('visitNotesApp', [

 'ngRoute', 'ngResource', 'ngAnimate', 'ngSanitize', 'ui.bootstrap'

])

.config(['$routeProvider', function($routeProvider) {

 $routeProvider.when('/view1', {

 templateUrl: '/' + OPENMRS_CONTEXT_PATH +

'/ms/uiframework/resource/bannerprototype/partials/view1.html',

 css: '/' + OPENMRS_CONTEXT_PATH +

'/ms/uiframework/resource/bannerprototype/styles/app.css'

 })

 $routeProvider.when('/view2', {

 templateUrl: '/' + OPENMRS_CONTEXT_PATH +

'/ms/uiframework/resource/bannerprototype/partials/view2.html',

 css: '/' + OPENMRS_CONTEXT_PATH +

'/ms/uiframework/resource/bannerprototype/styles/app.css'

 })

 $routeProvider.otherwise({redirectTo: '/view1'});

}]);

40

5.2 AngularJS folder structure

Here is the folder structure of the AngularJS files – view1.html and view2.html under

webapp/resources/partials are the html files for page 1 and page 2 of the application respectively. The

webapp/resources/scripts folder has separate folders for AngularJS controllers, directives, filters,

resources, services etc.

 Figure 24: AngularJS folder structure

41

5.3 AngularJS controllers

Angular controllers are used to set up the initial state of the $scope object and to add properties and

methods to the $scope. They contain business logic. There is a single controller for page 1 called

cloudController.js and one controller for page 2 called heatmapController.js.

Examples of methods in the cloud controller are addToSearch() and page1Submit(). addToSearch() is

called when any term in the word cloud is clicked, and page1Submit() is called when the form at the

bottom of page 1 is submitted. The relevant code snippets are shown from view1.html and

cloudController.js:

<form class="searchbottom" ng-submit="page1Submit(searchInput)">

$scope.addToSearch = function(name){

 if($scope.searchInput === "")

 $scope.searchInput += name ;

 else

 $scope.searchInput += ", " + name ;

 };

 $scope.page1Submit = function(searchInput){

 SearchFactory.setSearchTerms($scope.searchInput);

 $location.url('/view2');

 };

The controllers also consume JSON data from REST web services. This is discussed further in the next

section. In addition, the controllers use $scope.$watch to register a listener callback to be executed

whenever the watch expression changes. A code snippet below from cloudController.js shows the use of

$watch. The slider min and max dates, entity type and number of terms to display are tracked, and a

REST web service call for the cloud data is made if any of the above properties change.

$scope.$watch('[sliderMinDate, sliderMaxDate, entityType, displayNumTerm]',

 function(newVals, oldVals) {

 $scope.words = WordResources.displayCloud({

42

The heatmapController handles the business logic for how page 2 gets populated. If both the search

terms and the visit date selected on page 1 are “falsy”, the application is reloaded by re-routing to page

1. On the other hand, if search terms were entered on page 1, the heat map and visit note list are

populated with data returned from corresponding REST calls. If a visit date was clicked on page 1, the

visit note list and rendering sections are updated with data for the particular date. The code is shown:

 if (!$scope.searchInput && !$scope.visitDateUuid) {

 $location.url('/view1');

 } else if ($scope.searchInput){

 //populate the heat map and visit note list with data for the search terms

 } else if ($scope.visitDateUuid) {

 //populate the visit note list and rendering with data for the date selected

 }

In the heatmapController.js, the business logic to handle these three scenarios is similar – loading page 2

with search terms entered on page 1, search terms and dates submitted on page 2 and breadcrumbs

clicked on page 2. All of these cases result in re-loading the heat map and visit note list sections based

on the search terms and date range entered.

5.4 AngularJS directives and D3.js

In AngularJS, directives are used for DOM manipulation. Angular comes with a set of built-in directives

such as ngModel, ngClass and ngBind. This application creates four custom directives – slider.js for the

slider on page 1, visitDates.js for the D3.js visit dates visualization at the top of page 1, heatMap.js for

the D3.js heat map visualization on page 2 and renderNote.js for the Visit Note Rendering section on

page 2.

Directives are matched based on element names (E), attributes (A), class names (C) and comments (M).

A directive can specify which of the four matching types it supports in the restrict property of the

directive definition object. Isolate scope has been used for the custom directives, so the scope inside

each directive is separated from the outside scope. The outside scope is then mapped by binding data to

43

the directive’s isolate scope. Here’s a code snippet from the visitDates directive with five properties

passed to the isolate scope:

visitNotesApp.directive('visitDates', function($compile){

 return {

 restrict: 'E',

 scope: {

 visitDatesData: '=visitDatesData',

 visitDatesDataUpdated: '=visitDatesDataUpdated',

 visitDateUuid: '=visitDateUuid',

 sliderMinDate: '=sliderMinDate',

 sliderMaxDate: '=sliderMaxDate'

 },

 link: function(scope, element, attrs, controller) {

D3 visualizations with SVGs are created in both the heatMap.js and visitDates.js directives. For the

visitDates visualization, an SVG is first created, and then vertical bars are added for each date in the

data. An X-axis is added and tooltips are added to show details upon hovering over a vertical bar.

Scope.$watch is added to build the visualization again if the slider min and max dates have changed or if

the data has been loaded. The D3.js code below shows how a vertical bar of height ‘20’, width ‘2’ is

added at the corresponding X-axis location for each date in the data:

var dates = svg.selectAll('.dates')

 .data(data)

 .enter().append('rect')

 .attr('x', function(d){ return xScale(new Date(d.dateCreated)) })

 .attr('y', 10)

 .attr("rx", 0)

 .attr("ry", 0)

 .attr('width', 2)

 .attr('height', 20)

The heatMap.js directive is more complex than visitDates. Properties shared with the isolate scope of

the heatMap directive include the data, start and end dates for the timeline and resetMap. Other shared

properties are used to populate the search bar upon right clicking a heat map term (searchInput) and to

filter the Visit Note List (filterFromDate, filterToDate, matchTerm, visitListInput). HeatMap.js updates

the visualization by keeping track of the current state of the heat map. The current state includes details

44

such as entities that have been removed by the user by clicking ‘X’, and entities that have been toggled

by clicking (+).

In heatMap.js, an SVG is first added and then entity frequencies in various rectangles are computed so

that the color scale can be set. For the color scale, a frequency of ‘0’ corresponds to a very light color,

and the highest computed frequency in a rectangle corresponds to a deep red color. This color scale is

applied to both the rectangles and the vertical bars and it gets re-computed with every update. Here’s

the code for the color scale:

var colorScale = d3.scaleLinear()

 .domain([0, d3.max(AllRect, function(d){ return d.totFreq;})])

 .range(['#ffffd9', '#ff0033']);

The heat map is then populated row by row for each entity. In each row, (+) or (-) is displayed for search

terms, then the entity name is displayed. The entity can be right clicked to be added to the search bar,

and left clicked to be added to the filter on the Visit Note List section. The heat map rectangles and

vertical bars are added, which display tooltips upon hovering and filter the Visit Note list upon clicking.

Finally the ‘X’ symbol on each row is displayed. Below all the entities, the X-axis and a color scale legend

are added. There is a scope.$watch to track the input data and the resetMap variable, which updates

the visualization if these values change. Here’s the code snippet for the display of an entity.

var yLabel = d3.select(this).append("text")

 .text(function (d) { return d.mentionText; })

 .attr("x", 1.4*termWidth)

 .attr("y", function (d, i) { return ((gridHeight*3)/4) + (j *

gridHeight); })

 .style('text-anchor', 'end')

 .style('font-family', 'sans-serif')

 .attr('class', 'yLabel')

 .each(//sets the color of the text

 function(d){

 d3.select(this).classed(d.mentionType, true)

 })

 .on("contextmenu", function(d, i){ //right click to add to search bar

 d3.event.preventDefault();

 scope.$apply(function() {

 if(scope.searchInput === "")

45

 scope.searchInput += d.mentionText ;

else

 scope.searchInput += ", " + d.mentionText ;

 });

 })

 .on("click", function(d, i){ //left click to add to Visit List filter

 scope.$apply(function() {

 scope.scrollToList = true;

 scope.visitListInput = d.mentionText;

 });

 });

For the date range slider, a library called jQRangeSlider has been used. The slider.js directive handles the

bounds, default min and max dates, minimum range and updates the slider min and max dates.

5.5 AngularJS filters and services

Angular filters are used to filter data. In this application, they are used to filter the Visit Note List section.

The custom dateRangeAndTerm.js filter is used to filter visit notes displayed in the table by the start and

end dates and the entity selected. An in-built Angular filter is also used which filters the visit notes by

the input element associated with visitListInput. This is a very useful filter since anything entered into

the input box is compared to all the data associated with a visit note. For example, filtering by ‘2016’

filters for visit notes which have ‘2016’ anywhere in the data. Similarly, filtering by ‘end stage liver

disease’ filters for visit notes with this term, and it is expected to be part of the problemWordList of the

visit note. Here’s the corresponding code snippet from view2.html:

<tr ng-repeat="visitNote in filteredVisitNotes = (visitNotes | orderBy: 'date' |

dateRangeAndTerm: filterFromDate : filterToDate : matchTerm | filter:visitListInput |

uniqueNotes) | limitTo:5:5*(currentPage-1)"

 ng-click="selectNote()">

 <td>{{visitNote.date | date:'mediumDate'}}</td>

 <td>{{visitNote.diagnosis}}</td>

 <td>{{visitNote.provider}}</td>

 <td>{{visitNote.location}}</td>

 </tr>

Angular services are used to share state between the two controllers used in this application.

46

6. Package Structure

Some directories, such as those with .js/css files have not been included.

 Figure 25: Module API package structure

47

 Figure 26: Module OMOD package structure

