
1.1

1.1.1

1.1.2

1.1.3

1.2

1.2.1

1.2.2

1.2.3

1.3

1.3.1

1.3.2

1.3.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.6

1.6.1

1.6.2

1.6.3

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.8

1.8.1

1.8.2

1.9

1.9.1

Table	of	Contents
Introduction

OpenMRS	Around	the	World

A	Brief	History

Example:	Amani	Clinic

Planning

Is	OpenMRS	for	You?

Identifying	Your	Needs

Transitioning	to	OpenMRS

Getting	Started

Installation	and	Initial	Setup

OpenMRS	Information	Model

Getting	Around	the	User	Interface

Configuration

Customizing	OpenMRS	with	Plug-in	Modules

Managing	Concepts	and	Metadata

Sharing	Concepts	and	Metadata

Configuring	Visits

Collecting	Data

The	Patient	Dashboard	In	Depth

Registering	Patients

Data	Entry

HTML	Forms

XForms

Using	Data

Cohort	Builder

Reporting

Patient	Alerts	and	Flags

Administering	OpenMRS

User	Management	and	Access	Control

Maintenance

Troubleshooting

Getting	Help	from	the	OpenMRS	Community

Epilogue

Leaving	Amani	Clinic

About	this	Book

Appendices

Appendix	A:	Glossary

1



1.9.2

1.9.3

Appendix	B:	Example	HTML	Form	Source

Appendix	C:	Document	History

2



Introduction

3



OpenMRS	Around	the	World
OpenMRS	clinical	and	research	locations	as	of	2016

This	is	your	book.	Simply	scroll	to	the	top	of	any	page	and	click	the	EDIT	link	to	contribute	changes.	Want	to
contribute	more	than	small	edits?	Learn	more	about	how	to	contribute.

OpenMRS	is	an	electronic	medical	record	system	(EMR)	platform,	designed	for	use	in	the	developing	world	and	first	established
in	2004.	Today,	the	system	has	evolved	into	a	medical	informatics	platform	used	on	nearly	every	continent,	supporting	health	care
delivery	and	research	in	an	extremely	wide	variety	of	contexts.

Our	world	continues	to	be	ravaged	by	pandemics	of	epic	proportions,	as	untold	millions	of	people	are	infected	with	diseases	such
as	HIV/AIDS,	multi-drug	resistant	tuberculosis,	malaria,	and	many	others.	Many	of	these	infections	occur	in	developing	countries,
where	lack	of	education	and	resources	contribute	to	scores	of	preventable	deaths.	Prevention	and	treatment	interventions	on	this
scale	require	efficient	information	management,	which	is	particularly	critical	as	clinical	care	must	increasingly	be	entrusted	to	less
skilled	providers.	Whether	for	lack	of	time,	lack	of	money,	or	no	access	to	software	developers,	most	health	care	programs	in
developing	countries	manage	their	information	with	simple	spreadsheets	or	small,	poorly	designed	databases--if	they	have	any
electronic	infrastructure	at	all.	Most	health	care	records	in	the	developing	world	are	still	maintained	on	paper.

As	a	response	to	these	challenges	in	developing	countries,	OpenMRS	was	created	as	a	medical	record	platform--a	rising	tide
which	we	hope	will	lift	all	ships.	It	is	designed	to	offer	a	better	tool	for	information	management,	but	also	to	reduce	unnecessary,
duplicate	efforts.	In	the	years	since	its	inception,	the	OpenMRS	community	has	grown	from	a	handful	of	organizations	to	a
massive	collaborative	effort	by	both	groups	and	individuals,	all	focused	on	creating	medical	record	systems	and	a	corresponding
implementation	network	that	allows	self-reliance	in	system	development,	even	in	resource-constrained	environments.

Since	its	beginning,	OpenMRS	has	been	based	on	the	principles	of	openness	and	of	sharing	ideas,	software	and	strategies	for
deployment	and	use.	The	system	is	designed	to	be	usable	in	very	resource-poor	environments	and	can	be	modified	with	the
addition	of	new	data	items,	forms	and	reports	without	the	need	to	write	complicated	application	code.	It	is	intended	as	a	platform
that	organizations	can	adopt	and	modify,	avoiding	the	need	to	develop	a	system	from	scratch.

And	indeed,	organizations	around	the	world	are	doing	just	that.	OpenMRS	is	now	in	use	in	clinics	in	Argentina,	Botswana,
Cambodia,	Congo,	Ethiopia,	Gabon,	Ghana,	Haiti,	Honduras,	India,	Indonesia,	Kenya,	Lesotho,	Malawi,	Malaysia,	Mali,
Mozambique,	Nepal,	Nicaragua,	Nigeria,	Pakistan,	Peru,	Philippines,	Rwanda,	Senegal,	South	Africa,	Sri	Lanka,	Tanzania,	The

OpenMRS	Around	the	World

4

https://github.com/openmrs/openmrs-book-guide/blob/master/CONTRIBUTING.md
https://openmrs.org


Gambia,	Uganda,	United	States,	Zanzibar,	Zimbabwe,	and	many	other	places.	This	work	is	supported	by	many	individuals	and
organizations,	including	international	and	government	aid	groups,	NGOs,	and	for-profit	and	non-profit	corporations.

OpenMRS	is	not	only	in	use	in	many	different	places,	but	it	is	also	being	used	to	meet	many	different	needs.	In	Kenya,	it	is	used
to	support	health	care	delivery	for	hundreds	of	thousands	of	patients	at	a	network	of	over	50	clinics--some	connected	by	typical
networks,	but	many	where	the	connection	requires	offline	synchronization	to	external	storage	that	can	be	physically	transported
between	sites.	Another	NGO	uses	a	central	OpenMRS	server	connected	to	clinics	in	multiple	countries	via	satellite	Internet
connections.	In	Malawi,	creative	individuals	with	a	talent	for	technology	have	built	a	mobile	cart	running	OpenMRS	that
physicians	roll	around	their	clinic,	interacting	with	the	system	using	a	touchscreen.	In	Rwanda,	the	national	ministry	of	health	has
worked	to	roll	out	a	connected	national	health	care	system	using	OpenMRS.	In	the	United	States,	OpenMRS	is	used	to	track
patients	at	large	sporting	events,	for	mobile	providers	of	health	care	to	homeless	people,	and	as	a	personal	health	record	that
allows	cancer	patients	to	share	treatment	and	home	health	care	information	with	caregivers	and	family	members.

OpenMRS	in	use	at	TRAC	Plus	Clinic	in	Kigali,	Rwanda.

In	the	last	several	years,	use	of	mobile	technology	has	increased	dramatically,	particularly	in	the	developing	world.	In	some
developing	countries,	there	are	more	mobile	phones	than	people!	Facilitated	by	other	open	source	projects,	OpenMRS	can	be
integrated	with	SMS	messaging,	allowing	community	health	workers	to	add	information	about	adherence	to	medication	regimens
to	a	patient's	record,	as	they	make	rounds	through	villages	in	rural	Africa.	Elsewhere,	mobile	phone	applications	are	used	to	guide
these	community	volunteers	in	home-based	HIV	testing	and	counseling,	enrolling	prospective	patients	from	the	comfort	of	their
own	homes.

Besides	clinical	care,	the	platform	can	also	be	used	in	research	settings.	In	the	United	States,	OpenMRS	has	been	used	both	in
training	medical	informatics	students,	as	well	as	in	conducting	various	research	projects	in	the	fields	of	public	health.	In	Peru
OpenMRS	is	used	as	the	research	database	for	a	large	study	of	drug	resistant	tuberculosis	funded	by	the	US	National	Institutes	of
Health.	Because	the	system	has	been	designed	as	an	extensible	platform,	it	is	very	easy	for	researchers	to	adapt	OpenMRS	to	do
what	they	need.

OpenMRS	Around	the	World

5



OpenMRS	Around	the	World

6



A	Brief	History
One	of	OpenMRS'	birthplaces	–	Moi	University	Teaching	and	Referral	Hospital	in	Eldoret,	Kenya	(2004)	

Throughout	the	1990s,	an	academic	partnership	flourished	between	Indiana	University	School	of	Medicine	in	the	United	States
and	Moi	University	in	Eldoret,	Kenya,	providing	Kenyan	medical	students	with	access	to	health	care	training.	This	program
continued	to	grow	for	several	years	until	a	severe	outbreak	of	HIV/AIDS	in	Western	Kenya	caused	the	program	to	rethink	its
goals,	at	which	point	the	Academic	Model	for	Prevention	and	Treatment	of	HIV/AIDS	(AMPATH)	was	created.	The	number	of
patients	in	Kenya	continued	to	grow,	and	basic	IT	systems	including	Microsoft	Access	were	used	to	monitor	patient	care.

In	February	2004,	the	amount	of	data	had	become	too	large	for	AMPATH's	existing	systems,	so	their	medical	director	invited
Burke	Mamlin,	from	the	Regenstrief	Institute	in	Indianapolis,	United	States,	to	visit	the	site	and	evaluate	how	improvements	in
medical	informatics	technology	could	improve	AMPATH's	data	management.	Regenstrief	had	long	been	recognized	as	a	leader	in
medical	informatics	research,	and	Burke	brought	his	colleague	Paul	Biondich	along	with	him	on	the	visit	to	Kenya.	It	quickly
became	apparent	that	a	new	system	was	needed.	Paul	and	Burke	began	to	design	the	data	model	for	a	new	medical	records	system
for	AMPATH,	which	would	go	on	to	become	OpenMRS.

At	the	same	time,	a	Boston-based	non-profit	named	Partners	In	Health	(PIH)	was	pioneering	the	use	of	web-based	EMRs	in
developing	countries.	They	had	built	the	PIH-EMR,	which	they	were	using	to	support	the	treatment	of	multi-drug	resistant
tuberculosis	in	Peru	and	HIV	in	Haiti.	But	Hamish	Fraser,	PIH's	director	of	the	EMR	project,	was	worried:	PIH	was	about	to
expand	into	Rwanda,	Lesotho,	and	Malawi,	and	he	feared	it	would	be	difficult	to	maintain	their	home-built	system	in	5	countries.

In	September	2004,	Paul	and	Burke	met	Hamish	at	the	World	Congress	on	Medical	and	Health	Informatics	(MedInfo)	conference
in	San	Francisco.	It	became	apparent	that	the	three	shared	similar	goals	and	needs,	so	they	agreed	to	work	collaboratively	to
develop	a	system	that	would	be	suitable	for	the	various	needs	of	humanitarian	work	in	African	nations	and	beyond.

A	Brief	History

7



Paul	and	Burke	hired	developer	Ben	Wolfe	to	begin	work	on	programming	an	early	prototype	of	OpenMRS,	based	on	their
previous	work	at	AMPATH	and	Regenstrief.	Several	months	later,	PIH's	lead	developer	Darius	Jazayeri	joined	the	project,
merging	PIH-EMR's	functionality	into	the	new	system.	The	previous	systems	at	AMPATH	focused	on	data	entry,	while	at	PIH,	the
focus	was	more	on	clinical	workflow.	The	new	system	combined	features	of	both	the	AMPATH	and	PIH	systems.

Because	of	the	strong	cooperation	between	PIH	and	Regenstrief	and	the	long	distances	involved,	it	became	clear	that	an	open
source	software	model	of	development	was	the	best	way	to	sustain	and	grow	the	platform,	and	the	OpenMRS	project	was	born.

While	the	collaboration	between	Regenstrief	and	PIH	continued	and	the	new	system	was	being	designed,	the	groups	were	looking
for	additional	support	in	Africa.	They	turned	to	their	colleague	Chris	Seebregts,	from	the	South	African	Medical	Research	Council
(MRC).	Chris	was	already	heavily	involved	in	the	field	of	medical	informatics	throughout	sub-Saharan	Africa,	and	brought	with
him	a	wealth	of	knowledge	about	the	needs	of	informatics	implementations.	Seebregts	had	been	adapting	OpenMRS	for	use	in
South	Africa	and	started	to	build	up	a	community	of	implementers	of	the	software	around	the	world.	His	work	led	to	massive
growth	of	the	OpenMRS	community	(now	nearly	2,000	strong	as	of	late	2011).	In	February	2006,	AMPATH	launched	OpenMRS
in	Kenya,	and	PIH	brought	it	to	Rwinkwavu,	Rwanda,	in	August	of	the	same	year.	The	South	African	MRC	first	switched	on	the
system	at	Richmond	Hospital	in	KwaZulu-Natal	at	the	end	of	2006.

As	both	the	OpenMRS	application	and	open	source	community	grew,	they	gathered	the	attention	of	many	other	large	projects	and
agencies.	Some	of	these	have	extended	both	financial	and	consulting	support	over	the	past	several	years,	including:

The	United	States	Center	for	Disease	Control	(CDC)

The	United	States	Center	for	Disease	Control	(CDC)

Canada's	International	Development	Research	Centre	(IDRC)

National	Institutes	of	Health	Fogarty	International	Centre

The	Millennium	Villages	Project	of	the	Earth	Institute,	Columbia	University

The	Rockefeller	Foundation

World	Health	Organization

In	an	effort	to	broaden	participation	in	the	project	around	the	world,	OpenMRS	began	participating	in	the	Google	Summer	of
Code	(GSoC)	program	in	2007.	GSoC	provides	university	students	who	wish	to	participate	in	open	source	development	projects
with	a	stipend	and	a	close	mentoring	relationship	with	an	experienced	project	team	member.	Participation	in	the	program	has
continued	since	then--OpenMRS	is	now	one	of	the	larger	open	source	projects	in	the	program,	boasting	a	large	class	of	alumni,	a
number	of	whom	continue	to	contribute	to	the	project.	Many	of	these	alumni	come	from	the	developing	world,	and	some	have
gone	on	to	successful	software	development	careers.

A	Brief	History

8



The	inaugural	OpenMRS	Implementers	Meeting	in	Cape	Town,	South	Africa.	

One	of	the	aims	of	the	OpenMRS	community	is	to	help	build	local	capacity	in	the	places	where	it	is	used.	To	that	end,	participants
in	the	community	are	encouraged	to	develop	programs	and	processes	that	encourage	entrepreneurship	and	the	creation	of
partnerships	to	grow	the	field	of	medical	informatics,	particularly	in	the	developing	world.	For	example,	in	Kigali,	Rwanda,
Partners	In	Health	jump-started	a	local	training	program	known	as	E-Health	Software	Development	and	Implementation	(EHSDI).
This	9-month	course	conducted	in	partnership	with	the	Rwanda	Development	Board	and	the	Kigali	Institute	of	Science	and
Technology	(KIST)	was	designed	to	teach	students	to	develop	medical	information	systems.	It	includes	extensive	training	in	using
the	OpenMRS	platform.

The	number	of	individual	and	organizational	volunteers	who	participate	in	the	OpenMRS	community	has	continued	to	grow,
tripling	in	size	between	2010	and	2011.	These	individuals	participate	in	various	ways,	from	documentation	and	bug	reports,	from
training	and	providing	support	to	other	community	members.	The	release	of	OpenMRS	1.8	was	made	possible	by	the	assistance	of
over	50	contributors.

Further,	collaborations	with	other	open	source	software	organizations	such	as	Open	Data	Kit	and	Pentaho	have	produced
volunteer	contributions	to	OpenMRS,	and	commercial	consulting	organizations	such	as	ThoughtWorks	Inc.	have	contributed
many	hours	to	developing	and	improving	OpenMRS.

At	the	close	of	2011,	the	OpenMRS	community	is	preparing	to	launch	an	independent	not-for-profit	organization	to	help	support
the	project's	needs	as	it	grows.	The	goal	of	this	organization	will	be	to	provide	technical	infrastructure	and	community
management,	to	assist	collaboration	and	cooperation	of	project	volunteers	throughout	the	world,	and	to	provide	training	and
support	to	those	who	seek	to	implement	OpenMRS	as	a	key	part	of	a	medical	informatics	strategy	in	clinics,	hospitals,	and
government	health	organizations.

From	its	humble	beginnings	as	a	solution	to	a	problem	in	a	small	African	town,	OpenMRS	has	become	the	largest	open	source
health	care	project	on	the	planet.	Between	2006	and	2011,	OpenMRS	at	AMPATH	in	Kenya	has	recorded	over	111,000,000	points
of	data	for	over	180,000	patients,	helping	to	save	many	thousands	of	lives.	Every	day,	similar	stories	are	retold	somewhere	else

A	Brief	History

9



around	the	world	with	the	assistance	of	thousands	of	volunteers.	The	OpenMRS	community	continues	to	grow,	and	we	are	excited
that	you're	interesting	in	joining	us.	Regardless	of	your	background	or	interests,	there	is	a	way	for	you	to	both	contribute	and	gain
from	the	work	of	others	in	the	OpenMRS	community.

What's	New	in	Version	1.9

This	version	of	OpenMRS	includes	a	new	concept,	Visit.	A	visit	is	comprised	of	at	least	one	Encounter.	Encounter	has	been
redefined	in	this	version	as	a	transaction	between	a	patient	and	at	least	one	health	care	provider	to	provide	service	or	assess	a
patient's	health	status.

OpenMRS	Attributes	now	allows	for	implementation-specific	customizations	of	certain	types	of	OpenMRS	data.	In	earlier
releases,	only	Person	could	be	customized.	Now,	you	can	also	customize	Provider,	Visit,	and	Location	data.

Concept	Mapping	has	been	improved	in	this	release,	now	allowing	you	to	define	how	your	system's	concepts	relate	to	external
concepts	and	standards.

A	Brief	History

10



Example:	Amani	Clinic
We	assume	if	you're	reading	this	book	that	you're	interested	in	deploying	OpenMRS	to	support	clinical	care	in	the	real	world.	To
bridge	the	divide	between	theory	and	practice,	and	to	illustrate	the	sometimes	challenging	process	of	deploying	a	large	health-care
information	system,	we	have	used	the	example	of	the	fictional	Amani	Clinic	as	a	case	study	throughout	this	book.

Every	time	you	see	this	image	in	the	book,	you	will	learn	how	Amani	Clinic	used	the	information	discussed	to	plan	and
implement	OpenMRS.

While	a	single	example	could	never	possibly	capture	all	the	complexity	of	the	many	different	contexts	in	which	OpenMRS	might
be	used,	we	hope	it	will	serve	as	inspiration	to	think	about	how	your	environment	may	be	similar	or	different.	We	also	hope	that	as
you	read,	you	will	start	to	consider	the	questions	you	need	to	ask	to	begin	to	design	and	implement	your	own	installation	of
OpenMRS.

About	the	Amani	Clinic

Our	fictional	case	study,	Amani	Clinic	in	Kisiizi,	Uganda.

Kisiizi	is	a	small	town	in	southwest	Uganda,	over	40	kilometers	from	the	nearest	large	city.	Much	of	the	fame	of	Kisiizi	is	based
on	its	hydroelectric	power	generating	station	and	its	relatively	large	hospital,	which	handles	most	of	the	health	care	for	the	region.

Just	over	two	years	ago,	a	European-based	NGO	provided	funding	to	help	launch	a	new	health	care	facility	we'll	call	"Amani
Clinic"	in	the	town.	This	clinic	was	opened	specifically	to	address	the	need	for	maternal	and	child	health	(MCH)	care	in	Kisiizi
and	the	surrounding	areas.

Since	its	opening,	the	clinic	has	been	very	successful	in	establishing	itself,	and	has	attracted	a	full	staff	of	doctors,	nurses,	and
assistants.	New	patients,	both	pregnant	women	and	new	mothers,	are	continually	being	registered	in	the	clinic,	but	there	is	very
little	information	available	about	the	efficacy	of	the	work	in	the	clinic,	or	the	outcomes	for	its	patients.	Therefore,	the	funding
agency	has	requested	that	the	clinic	work	to	implement	an	information	system,	to	help	better	monitor	and	evaluate	the	health	care
outcomes	of	the	patients	over	time,	and	to	help	the	clinic	scale	up	to	see	more	patients	more	efficiently.	The	agency	recommended
that	the	clinic	consider	using	OpenMRS,	which	had	been	successfully	used	by	other	projects	funded	by	that	agency	in	other
countries.

The	funding	model	provided	for	some	information	and	communication	technology	(ICT)	infrastructure	to	get	the	project	started,
as	well	as	for	some	staffing	support.	However,	deciding	how	to	allocate	this	money	was	left	up	to	the	clinic's	local	management.
After	receiving	the	grant	funding,	the	director	of	the	site	hired	Claudine,	a	graduate	of	a	medical	informatics	training	program	in
neighboring	Rwanda,	to	help	lead	the	effort.	This	newly-hired	informatics	manager,	in	turn,	hired	Daniel,	recent	university
graduate	from	Kampala	with	expertise	in	ICT	infrastructure	and	system	administration.

Since	the	clinic	was	opened,	doctors	and	nurses	have	used	paper	forms	to	collect	data	about	their	patients.	These	forms	are	stored
in	folders	and	kept	in	a	locked	file	room	until	a	patient's	appointment.	When	the	patients	arrive,	they	are	given	their	folder	to	carry
with	them	as	they	talk	with	the	various	health	care	providers	they	will	see	during	their	visit.	Each	of	these	providers	completes	the

Example:	Amani	Clinic

11



relevant	paper	forms	to	add	information	about	the	visit.	The	forms	are	added	to	the	patient's	folder,	which	is	returned	at	the	end	of
their	visit.

Clinical	staff	were	concerned	when	they	heard	about	the	upcoming	deployment	of	OpenMRC,	because	of	the	possibility	of
changes	to	the	way	they	are	used	to	working.	However,	the	informatics	manager	has	assured	them	that	they	can	continue	to	use
the	familiar	paper	forms.	When	a	patient	arrives	at	the	clinic,	they	will	be	registered	by	a	patient	registration	clerk.	After	the
patient's	visit	is	complete,	a	data	entry	clerk	will	enter	the	information	from	that	visit	into	OpenMRS.

Many	people	in	Kisiizi	have	basic	ICT	skills,	and	there	is	a	local	Internet	cafe,	supported	by	an	NGO	that	provides	basic	ICT
training	to	local	residents.	Two	recent	students	have	been	hired	as	the	first	patient	registration	and	data	entry	clerks	for	the	clinic.

Meanwhile,	the	system	administrator	has	finished	his	preparation	work	and	has	deployed	a	basic	local	area	network	(LAN)	to
connect	a	server	that	will	host	the	OpenMRS	application	to	PCs	in	the	file	room,	in	the	clinic	manager's	office,	and	in	the	ICT
room.	The	LAN	is	connected	to	the	Internet,	although	the	connection	isn't	very	fast	and	often	goes	offline.	The	server	is	powered
by	an	uninterruptible	power	supply	(UPS),	that	will	ensure	it	stays	running	despite	any	fluctuations	in	the	local	power	grid.

Through	the	rest	of	this	book,	you	will	follow	the	progress	of	the	people	at	the	Amani	Clinic	as	they	install	OpenMRS,	customize
it	to	fit	the	needs	of	their	clinic,	and	use	OpenMRS	from	day	to	day,	first	to	enter	data	and	then	to	extract	it	for	patient	visits	and
for	reporting	to	their	funding	agency	on	an	ongoing	basis.

Example:	Amani	Clinic

12



Example:	Amani	Clinic
We	assume	if	you're	reading	this	book	that	you're	interested	in	deploying	OpenMRS	to	support	clinical	care	in	the	real	world.	To
bridge	the	divide	between	theory	and	practice,	and	to	illustrate	the	sometimes	challenging	process	of	deploying	a	large	health-care
information	system,	we	have	used	the	example	of	the	fictional	Amani	Clinic	as	a	case	study	throughout	this	book.

Every	time	you	see	this	image	in	the	book,	you	will	learn	how	Amani	Clinic	used	the	information	discussed	to	plan	and
implement	OpenMRS.

While	a	single	example	could	never	possibly	capture	all	the	complexity	of	the	many	different	contexts	in	which	OpenMRS	might
be	used,	we	hope	it	will	serve	as	inspiration	to	think	about	how	your	environment	may	be	similar	or	different.	We	also	hope	that	as
you	read,	you	will	start	to	consider	the	questions	you	need	to	ask	to	begin	to	design	and	implement	your	own	installation	of
OpenMRS.

About	the	Amani	Clinic

Is	OpenMRS	for	You?

13



Kisiizi	is	a	small	town	in	southwest	Uganda,	over	40	kilometers	from	the	nearest	large	city.	Much	of	the	fame	of	Kisiizi	is	based
on	its	hydroelectric	power	generating	station	and	its	relatively	large	hospital,	which	handles	most	of	the	health	care	for	the	region.

Just	over	two	years	ago,	a	European-based	NGO	provided	funding	to	help	launch	a	new	health	care	facility	we'll	call	"Amani
Clinic"	in	the	town.	This	clinic	was	opened	specifically	to	address	the	need	for	maternal	and	child	health	(MCH)	care	in	Kisiizi
and	the	surrounding	areas.

Since	its	opening,	the	clinic	has	been	very	successful	in	establishing	itself,	and	has	attracted	a	full	staff	of	doctors,	nurses,	and
assistants.	New	patients,	both	pregnant	women	and	new	mothers,	are	continually	being	registered	in	the	clinic,	but	there	is	very
little	information	available	about	the	efficacy	of	the	work	in	the	clinic,	or	the	outcomes	for	its	patients.	Therefore,	the	funding
agency	has	requested	that	the	clinic	work	to	implement	an	information	system,	to	help	better	monitor	and	evaluate	the	health	care
outcomes	of	the	patients	over	time,	and	to	help	the	clinic	scale	up	to	see	more	patients	more	efficiently.	The	agency	recommended
that	the	clinic	consider	using	OpenMRS,	which	had	been	successfully	used	by	other	projects	funded	by	that	agency	in	other
countries.

The	funding	model	provided	for	some	information	and	communication	technology	(ICT)	infrastructure	to	get	the	project	started,
as	well	as	for	some	staffing	support.	However,	deciding	how	to	allocate	this	money	was	left	up	to	the	clinic's	local	management.
After	receiving	the	grant	funding,	the	director	of	the	site	hired	Claudine,	a	graduate	of	a	medical	informatics	training	program	in
neighboring	Rwanda,	to	help	lead	the	effort.	This	newly-hired	informatics	manager,	in	turn,	hired	Daniel,	recent	university
graduate	from	Kampala	with	expertise	in	ICT	infrastructure	and	system	administration.

Since	the	clinic	was	opened,	doctors	and	nurses	have	used	paper	forms	to	collect	data	about	their	patients.	These	forms	are	stored
in	folders	and	kept	in	a	locked	file	room	until	a	patient's	appointment.	When	the	patients	arrive,	they	are	given	their	folder	to	carry
with	them	as	they	talk	with	the	various	health	care	providers	they	will	see	during	their	visit.	Each	of	these	providers	completes	the
relevant	paper	forms	to	add	information	about	the	visit.	The	forms	are	added	to	the	patient's	folder,	which	is	returned	at	the	end	of
their	visit.

Clinical	staff	were	concerned	when	they	heard	about	the	upcoming	deployment	of	OpenMRC,	because	of	the	possibility	of
changes	to	the	way	they	are	used	to	working.	However,	the	informatics	manager	has	assured	them	that	they	can	continue	to	use
the	familiar	paper	forms.	When	a	patient	arrives	at	the	clinic,	they	will	be	registered	by	a	patient	registration	clerk.	After	the
patient's	visit	is	complete,	a	data	entry	clerk	will	enter	the	information	from	that	visit	into	OpenMRS.

Many	people	in	Kisiizi	have	basic	ICT	skills,	and	there	is	a	local	Internet	cafe,	supported	by	an	NGO	that	provides	basic	ICT
training	to	local	residents.	Two	recent	students	have	been	hired	as	the	first	patient	registration	and	data	entry	clerks	for	the	clinic.

Meanwhile,	the	system	administrator	has	finished	his	preparation	work	and	has	deployed	a	basic	local	area	network	(LAN)	to
connect	a	server	that	will	host	the	OpenMRS	application	to	PCs	in	the	file	room,	in	the	clinic	manager's	office,	and	in	the	ICT
room.	The	LAN	is	connected	to	the	Internet,	although	the	connection	isn't	very	fast	and	often	goes	offline.	The	server	is	powered
by	an	uninterruptible	power	supply	(UPS),	that	will	ensure	it	stays	running	despite	any	fluctuations	in	the	local	power	grid.

Through	the	rest	of	this	book,	you	will	follow	the	progress	of	the	people	at	the	Amani	Clinic	as	they	install	OpenMRS,	customize
it	to	fit	the	needs	of	their	clinic,	and	use	OpenMRS	from	day	to	day,	first	to	enter	data	and	then	to	extract	it	for	patient	visits	and
for	reporting	to	their	funding	agency	on	an	ongoing	basis.

Is	OpenMRS	for	You?

14



Identifying	Your	Needs
Discussing	requirements	and	needs	at	TRAC	Plus	clinic	in	Kigali.	

This	chapter	covers	some	basic	strategies	for	identifying	your	organizational	needs,	and	how	OpenMRS	might	help.	It	does	not	go
into	detail	about	what	OpenMRS	does	or	how	it	stores	data	--	you	will	find	that	in	other	chapters.	Instead,	we	encourage	you	to
first	take	a	step	back	and	think	about	your	organization.

Your	organizational	goals	and	practices

For	now,	forget	about	technology	and	instead	think	about	your	organizational	goals	and	processes.	Here's	a	list	of	questions	to
start:

What	are	the	high-level	goals	of	your	organization?

What	are	the	teams	and	staff	in	the	clinic?	What	roles	exist?	What	functions	does	each	role	perform?

What	tasks	are	staff	involved	with	on	a	day-to-day	basis?

What	services	does	the	clinic	provide	to	your	patients?	What	activities	are	involved?

What	other	3rd-party	or	government	organizations	do	you	report	to?	What	information	is	included	in	each	of	these	reports?

Answering	these	questions	will	probably	help	you	think	of	more	related	questions.	Make	sure	you	consider	them	thoroughly.

Take	advantage	of	institutional	knowledge
As	you	think	about	your	patients	and	how	they	interact	with	your	organization,	talk	to	your	clinical	and	administrative	staff--both
those	who	have	been	around	a	long	time,	and	those	who	have	just	joined.	Talk	to	as	many	people	as	possible	to	get	a	complete
picture	of	every	service	provided	to	patients.

Identifying	Your	Needs

15



People	generally	want	to	be	positive	in	describing	their	work	places,	so	you	may	need	to	ask	some	people	multiple	times.	Get
physical	or	electronic	copies,	or	pictures	of	all	paper	forms	if	possible.	Figure	out	where	(e.g.,	specific	rooms	and	desks)	data	is
recorded	onto	paper	and	by	whom.	Write	an	overview	of	current	practices	and	define	specific	shortcomings	that	could	be
addressed	by	using	an	electronic	medical	records	system.

Note	that	practices	may	vary	seasonally,	for	example	if	the	hospital	is	much	busier	due	to	increased	malaria	during	rainy	season	or
malnutrition	before	harvest.

Map	your	needs	to	OpenMRS

OpenMRS	has	been	designed	to	be	flexible	and	adaptable,	based	on	input	from	many	different	partners,	but	it	may	not	be	an	exact
fit	for	the	ways	that	your	organization	currently	works.	Doing	things	the	"OpenMRS	way"	could	mean	adapting	your	workflow
and	adopting	best	practices	in	medical	informatics.	Be	pragmatic	and	flexible,	and	think	about	whether	your	current	working
practices	might	need	to	change.

Remember	that	OpenMRS	offers	many	opportunities	to	capture	and	analyze	information	in	new	ways	not	previously	possible.
Taking	advantage	of	these	new	possibilities	might	lead	to	positive	changes	and	improvements	for	your	organization.

Do	not	"reinvent	the	wheel"
The	open	source	nature	of	OpenMRS	extends	beyond	application	itself	to	a	much	larger	open	community	where	ideas	and
experiences	are	shared.	There	are	many	existing	resources	available	in	the	form	of	pre-built	OpenMRS	features	(modules)	and
content	that	a	new	implementer	should	take	advantage	of.	You	should	explore	the	following	resources	before	building	anything
new.

Reuse	an	existing	concept	dictionary

A	well-constructed,	mature	concept	dictionary	(see	the	"OpenMRS	Information	Model"	chapter)	is	a	strong	foundation	for	any
OpenMRS	Implementation.

The	Millenium	Villages	Project	(MVP)	maintains	a	well-curated	concept	dictionary.	If	this	dictionary	is	applicable	to	your	domain
of	care,	you	should	strongly	consider	using	it.	The	best	way	to	learn	about	this	dictionary	is	through	a	partner	project,	the	Maternal
Concept	Lab.

http://om.rs/book-mcl

Other	OpenMRS	implementers	can	also	help	advise	you	about	other	concept	references	for	your	domain.	Read	the	"Getting	Help
from	the	OpenMRS	Community"	chapter	for	more	information.

Adapt	existing	forms

Implementers	should	evaluate	data	collection	forms	built	by	other	OpenMRS	users	before	creating	new	custom	forms	for	their
specific	needs.

Implementers	across	the	OpenMRS	community	have	invested	a	lot	of	resources	in	ensuring	that	their	forms	reflect	clinical	best
practices,	international	standards,	and	current	research.	These	forms	have	already	been	optimized	for	electronic	data	entry.	Many
OpenMRS	partners	develop	forms	using	medical	informatics	experts	that	may	not	be	available	to	all	projects.	Finally,	creating
forms	is	time	consuming;	those	resources	could	be	redirected	to	other	efforts.

The	OpenMRS	Form	Bank	is	a	new	community-driven	project	that	is	beginning	to	collect	existing	forms	from	other	users.	Visit
Form	Bank	for	details,	or	contact	other	implementers	for	help.	Read	the	"Getting	Help	from	the	OpenMRS	Community"	chapter
for	more	information.

Identifying	Your	Needs

16

http://om.rs/book-mcl
https://wiki.openmrs.org/display/RES/Form+Bank


Explore	the	module	repository

Implementers	should	consult	the	OpenMRS	Module	Repository	at	http://modules.openmrs.org/	before	considering	customization
through	software	development.

There	is	a	good	chance	that	someone	has	created	a	module	to	address	needs	you	may	have.	Read	the	"Customizing	OpenMRS
with	Plug-in	Modules"	chapter	for	a	list	of	recommended	modules.

Amani	discovers	their	specific	needs

Once	the	clinic	determined	they	would	use	OpenMRS,	they	began	thinking	specifically	about	how	they	would	integrate	their
existing	processes	into	the	workflow	supported	by	the	software.	As	the	newly-hired	medical	informatics	manager,	Claudine	knew
she	should	speak	with	everyone	working	in	the	clinic	and	watch	them	during	a	typical	day	to	understand	how	they	work.	When
she	spoke	to	them,	she	assured	them	that	OpenMRS	would	help	to	make	their	work	easier,	and	they	would	still	be	using	the	same
overall	processes	they	were	familiar	with.

Claudine	found	many	resources	within	the	OpenMRS	community,	including	pre-existing	concept	dictionaries	and	forms	that	had
been	used	in	other	clinics.	She	was	able	to	take	these	artifacts	and	adapt	them	to	Amani's	paper	forms	already	in	use.	Starting	out
with	the	work	of	others	saved	quite	a	bit	of	time.

Identifying	Your	Needs

17

http://modules.openmrs.org/


Transitioning	to	OpenMRS
A	paper-based	patient	register	book	at	an	African	OpenMRS	clinic.	

This	chapter	outlines	steps	that	typically	make	up	a	OpenMRS	project,	and	should	be	read	by	people	about	to	embark	on	a
OpenMRS	implementation.	Some	of	this	information	may	be	obvious	to	experienced	project	managers.	A	comprehensive	guide	to
project	management	is	beyond	the	scope	of	this	book,	but	we	have	included	some	high-level	process	considerations	to	get	you
started	thinking	about	what	needs	to	happen.

We	recommend	you	try	to	build	a	structured	implementation	process.	It's	important	to	plan	carefully--the	decisions	you	make
during	this	process	require	substantial	investments	of	resources,	and	you	will	be	living	with	your	choices	for	the	foreseeable
future.

When	you	start	out	on	a	new	OpenMRS	project,	you	should	spend	time	thinking	about	(at	minimum):

Which	people	will	be	involved	in	the	project

Business	goals	of	using	OpenMRS

How	you	will	approach	the	initial	configuration

What	ongoing	support	you	will	need

Costs	associated	with	ICT	infrastructure

Training	and	documentation

Change	management

People	and	the	project	team

Your	project	implementation	team	should	include	clinic	staff:

Transitioning	to	OpenMRS

18



1.	Management	are	aware	of	funding	obligations	and	third	party	reporting	requirements.

2.	 Health	care	providers	are	focused	on	improving	patient	care.

3.	 Administrative	staff	are	specialists	of	workflow	issues	and	clinic	processes.

The	team	could	also	include	the	following	people	that	may	or	may	not	be	from	the	clinic:

1.	 A	system	administrator	is	in	charge	of	installing	and	maintaining	OpenMRS	inside	of	the	clinic's	ICT	infrastructure.

2.	Medical	informatics	expert(s)	create	clinical	documentation	and	ensure	that	data	is	managed	properly	in	the	system.
Develop	reports.

3.	 (Optional)	A	project	manager	or	coordinator.	For	larger	implementations,	this	person	works	to	hold	people	accountable	to
finishing	their	work	in	a	timely	manner,	and	ensures	the	project	is	on	track.

4.	 (Optional)	Software	developers	may	be	needed	for	locations	that	decide	to	customize	the	system.

It	is	very	important	to	include	clinical	staff	(for	example	nurses,	data	entry	clerks,	and	others)	in	your	implementation	team	from
the	earliest	phases	of	the	project	so	that	the	resulting	deployment	is	useful	for	them	and	easy	for	them	to	use.

Managing	an	OpenMRS	project	will	require	a	major	time	investment	from	people	within	your	organization,	even	if	you	employ	an
external	consultant.	Organizations	often	underestimate	the	amount	of	time	that	will	be	required	from	their	staff	in	implementing	an
enterprise	ICT	project.	This	time	investment	includes	items	such	as	training,	modifying	existing	processes,	and	providing	new	or
updated	information	to	relevant	people.	Deploying	OpenMRS	is	no	different.	It's	not	something	that	can	be	added	to	the	end	of	an
already	busy	schedule,	and	we	urge	you	to	keep	this	in	mind	and	take	it	into	consideration	when	planning.

Goals
By	this	point	in	the	project,	you	should	have	a	good	idea	of	what	indicates	a	successful	OpenMRS	implementation	for	your	clinic.
This	could	be	something	like	reducing	time	to	prepare	month-end	reports	by	50%,	or	increasing	antiretroviral	treatment	(ART)	in
HIV-infected	pregnant	women	by	25%.	Your	goals	should	be	specific,	measurable,	attainable,	relevant,	timely--or	SMART.

These	goals	will	help	you	in	directing	and	managing	your	project.	For	example,	if	the	project	group	wants	some	customization
that	requires	budget	and	effort,	your	overall	goals	will	help	you	decide	whether	or	not	to	consider	that	customization.	Your	goals
will	help	you	to	focus	on	why	you	are	implementing	OpenMRS	and	what	you	want	to	achieve	in	the	long	run.

Incremental	adoption

It	often	makes	sense	to	divide	the	implementation	process	into	smaller,	more	manageable	sections,	which	can	be	implemented	in
discrete	stages	or	iterations.	Implementing	in	stages	allows	people	to	get	used	to	changes	gradually	without	feeling	overwhelmed,
and	allows	your	implementation	team	to	be	responsive	to	feedback	from	users	during	the	process.

Another	reason	people	choose	to	develop	iteratively	is	that	it	is	very	hard	for	users	to	correctly	or	fully	explain	their	requirements
at	the	beginning	of	the	project.	Giving	people	hands-on	experience	of	an	early	version	of	the	system	helps	them	understand	how	it
works	and	what	might	be	possible.	They	can	then	provide	you	with	valuable	feedback,	and	they	might	identify	new	requirements.

Transitioning	to	OpenMRS

19



The	Amani	Clinic	chose	to	introduce	change	iteratively.	First	they	started	using	the	system	for	patient	registration.	This	affected
only	the	administrative	staff	without	impacting	the	clinical	staff.	Later	they	started	doing	retrospective	data	entry,	which	included
paper	forms	for	clinicians	that	had	minor	changes,	as	well	as	training	a	new	data	entry	clerk.

Pilot	projects

Larger	multi-site	implementations	may	wish	to	develop	a	pilot	approach	to	help	reduce	risk.	In	this	scenario,	you	would	only
deploy	OpenMRS	at	one	site	and	learn	about	the	process	in	a	more	controlled	way.	You	can	then	incorporate	what	you've	learned
into	a	coordinated	implementation	process	for	other	sites.

Ongoing	support	and	development

It	is	a	mistake	to	think	about	an	OpenMRS	project	as	a	one-off	installation	that	will	meet	the	needs	of	your	organization	for	the
foreseeable	future.	Organizations	are	always	changing	and	evolving.	Your	medical	record	system	should	evolve	with	you,
otherwise	it	will	eventually	become	out	of	sync	with	the	organization.

Once	you	have	been	using	OpenMRS	for	a	while	and	staff	are	comfortable	with	it,	you	will	likely	want	to	take	advantage	of
additional	functionality.	Each	improvement	or	new	piece	of	functionality	you	decide	to	implement	in	OpenMRS	will	take
resources,	so	you	will	want	to	plan	ahead	for	these.

Even	if	your	organizational	needs	don't	change,	you	need	to	plan	for	ongoing	support	of	OpenMRS,	including:

Keeping	your	system	up-to-date	with	security	patches

Upgrading	to	the	latest	version	of	OpenMRS	(not	always	necessary,	but	OpenMRS	is	continually	improving	usability	and
adding	functionality)

Upgrading	the	modules	you	use	to	fix	bugs	and	improve	features

Maintenance	of	your	server	and	network	infrastructure

For	more	information,	see	the	"Maintenance"	chapter.

Training
Training	is	also	an	important	part	of	any	OpenMRS	implementation	project.	Your	training	could	take	many	forms	depending	on
the	needs	of	your	users,	but	it	often	makes	sense	to	spend	resources	(e.g.,	time	and	money)	on	formal	and	reusable	training
resources	such	as	user	guides,	lesson	plans,	and	other	materials.

Trying	to	cover	everything	in	one	training	session	probably	won't	be	effective.	People	will	want	and	need	time	to	digest	the	new
ideas	they	learn	and	use	them	in	their	daily	work,	and	you	must	anticipate	staff	turnover.	Instead,	consider	holding	smaller	training
sessions	that	introduce	concepts	and	specific	functionality,	followed	by	periods	of	testing,	piloting	and	feedback.	Customize	your
training	for	your	audience--not	everyone	needs	to	sit	through	a	two-hour	training	session	on	data	entry	if	only	a	single	person	is
responsible	for	this	role.	When	possible,	train	people	to	become	trainers.	This	increases	peoples'	sense	of	ownership	in	your
OpenMRS	implementation,	and	helps	people	to	better	remember	what	they	learn.

Training	is	an	ongoing	process.	New	employees	will	need	to	be	trained	when	they	start,	and	people	familiar	with	the	system	can
benefit	from	learning	about	more	advanced	topics.	People	may	need	further	training	when	there	are	significant	upgrades	or	new
functionality	is	added	to	OpenMRS.

Change	management

Transitioning	to	OpenMRS

20



Introducing	an	electronic	medical	record	system	will	cause	changes	in	workflow	and	processes	at	your	organization.	These
changes	may	be	"political"	and	cause	challenges	in	your	organization,	or	they	may	be	more	practical	and	technical	changes.	Either
way,	too	much	change	at	the	same	time	is	often	difficult	and	stressful.

To	help,	give	people	time	to	accept	and	support	each	change	so	that	they	share	in	ownership	of	the	new	system,	rather	than	feeling
as	if	something	has	been	forced	on	them.	Focus	on	simple	tasks	at	the	beginning	of	deployment	and	introduce	more	difficult	tasks
as	people	start	to	better	understand	OpenMRS.	Show	staff	how	the	new	system	will	make	their	work	easier	and	where	their
feedback	has	been	incorporated.

Good	planning	can	minimize	the	risks	around	change,	but	it	is	important	to	be	flexible	within	your	plan.	Unforeseen	things	often
occur,	and	a	plan	that	is	too	rigid	could	prevent	you	from	reaching	the	best	solution.

Transitioning	to	OpenMRS

21



Installation	and	Initial	Setup
An	OpenMRS	server	in	Uganda.	

You	can	download	OpenMRS	from	the	OpenMRS	web	site:

http://download.openmrs.org

There	are	two	ways	to	install	OpenMRS:	Standalone,	and	Enterprise.	You	must	have	Java	6	or	higher	installed	on	your	system	to
run	OpenMRS.	For	OpenMRS	Platform	2.0+	(includes	the	community's	Reference	Application	2.5+),	Java	8	or	higher	is	required.

OpenMRS	Standalone	provides	a	simplified	installation	option	with	an	embedded	database	and	web	server.	It	is	a	great	way	to
evaluate	and	explore	OpenMRS,	letting	you	get	a	local	version	up	and	running	within	minutes,	and	includes	download	options
with	sample	data.	OpenMRS	Standalone	should	run	fine	for	smaller	installations	(fewer	than	10,000	patient	records),	but	if	you
are	setting	up	a	larger	installation,	we	recommend	using	the	Enterprise	installation.	If	you	are	not	sure	which	makes	sense,	you	can
start	with	a	Standalone	installation	and	migrate	your	data	to	the	Enterprise	version	later.

OpenMRS	Enterprise	is	appropriate	for	larger	installations.	If	you	already	have	a	Java	servlet	container	and	a	database	installed,
and	you	want	to	set	up	OpenMRS	to	use	these	resources,	you	should	use	OpenMRS	Enterprise.

OpenMRS	Standalone

To	install	the	standalone	version,	download	the	ZIP	file	and	decompress	it,	then	double-click	the	openmrs-standalone.jar	file	to
run	it.	The	first	time	you	run	this	file,	it	will	install	OpenMRS	and	open	your	browser	to	the	new	OpenMRS	instance.

Installation	and	Initial	Setup

22

http://download.openmrs.org


During	setup,	there	is	an	option	to	install	demo	data.	You	may	choose	to	install	a	demo	concept	dictionary,	which	can	jump-start
your	form	creation	process.	You	may	also	install	demo	patient	data,	which	will	provide	a	better	demonstration	of	patient
encounters	and	demographics.

Do	not	delete	or	rename	any	files	or	folders	after	decompressing	the	ZIP	file.	These	files	and	folders	are	required	by	the
standalone	installer.

Alternatively,	from	the	command	line,	you	can	navigate	to	the	decompressed	folder	and	run	the	following	command:

java	-jar	openmrs-standalone.jar

On	Linux,	you	can	also	double-click	on	the	file	named	run-on-linux.sh.	If	you	are	prompted	for	how	to	run	it,	just	select	run.
Alternatively,	you	can	use	a	command	line	shell	to	navigate	to	the	decompressed	folder	and	run	the	following	command:

./run-on-linux.sh

Upgrading	Standalone

To	upgrade	a	copy	of	OpenMRS	Standalone,	do	the	following:

1.	 Stop	the	previous	version	of	OpenMRS	Standalone	and	exit	the	application.

2.	 Download	and	extract	the	most	recent	version	of	OpenMRS	Standalone.

3.	 Copy	your	database	directory	from	the	previous	version	to	this	new	OpenMRS	directory.

4.	 Copy	your	openmrs-standalone-runtime.properties	from	the	previous	version	to	this	new	OpenMRS	directory.

5.	 Install	OpenMRS	Standalone	as	described	above.	The	new	version	of	OpenMRS	will	run	with	your	old	data.

Logging	in

By	default,	the	initial	username	and	password	are	as	follows:

Username:	admin

Password:	Admin123

You	must	immediately	change	the	admin	password	after	installation	for	security	purposes.	To	change	your	password,	click	My
Profile	in	the	upper	right	of	OpenMRS,	and	choose	the	Change	Login	Info	tab.	Update	your	password,	then	click	Save	Options.
You	can	also	change	your	username,	and	provide	your	real	name,	on	this	screen.

Stopping	and	restarting

As	long	as	OpenMRS	is	running,	you	can	return	to	the	application	by	opening	the	following	URL	in	your	browser.

http://localhost:8081/openmrs-standalone/

Before	you	change	certain	preferences,	such	as	the	port	on	which	MySQL	or	Tomcat	runs,	you	must	stop	the	application.

To	stop	the	application,	use	the	Stop	button	in	the	user	interface,	or	choose	File	>	Quit.	Alternatively,	run	the	JAR	file	on	the
command	line	with	a	-stop	parameter.

You	can	restart	the	GUI	by	clicking	Start,	or	double-clicking	on	the	JAR	file	again.	Alternatively,	you	can	run	the	JAR	file	with
a-startparameter.

Installation	and	Initial	Setup

23



By	default,	OpenMRS	runs	the	MySQL	database	on	port	3316,	and	the	Tomcat	server	on	port	8081.	To	use	a	different	port,	stop
the	application,	then	change	the	port	number	in	the	openmrs-standalone-runtime.properties	file	or	in	the	GUI,	and	restart.	To
override	the	port	from	the	command	line,	run	the	JAR	file	with	a	-tomcatport	or	-mysqlport	parameter.

Changing	the	port	number	will	change	the	URL	used	to	access	the	application.	To	access	the	application,	you	can	choose	File	>
Launch	Browser,	or	run	the	JAR	file	with	a	-browser	parameter.

OpenMRS	Enterprise

You	must	have	Apache	Tomcat	and	MySQL	installed	on	your	system	before	installing	the	enterprise	version	of	OpenMRS.

Download	the	Enterprise	WAR	package	from

http://download.openmrs.org

Navigate	to	the	Tomcat	Web	Application	Manager	and	enter	your	Tomcat	administrator	credentials.

http://localhost:8080/manager/html

Browse	to	the	location	of	the	openmrs.war	package,	and	deploy	it.

The	initial	setup	which	follows	may	take	some	time.	At	the	end	of	the	process,	the	Web	Application	Manager	will	refresh,
and/openmrsshould	be	displayed	in	the	list	of	applications.	Tomcat	should	also	start	the	application	(Running	=	True).

Open	the	OpenMRS	web	application	to	complete	the	initial	setup	process.

http://localhost:8080/openmrs

Getting	Started	with	OpenMRS	Enterprise

The	first	time	you	run	OpenMRS,	the	setup	wizard	will	help	you	configure	your	installation.	Follow	the	instructions	in	this	wizard
to	set	up	your	database	and	populate	it	with	test	data	if	necessary.

To	change	your	configuration	later,	stop	the	application,	edit	the	file	openmrs-runtime.properties,	and	restart	the	application.	On
Windows,	you	can	probably	find	this	file	in	this	location:

C:\Documents	and	Settings\YOURUSERNAME\Application	Data\OpenMRS

or

C:\Windows\system32\config\systemprofile\Application	Data\OpenMRS

On	Mac	OS	X	or	Linux	systems,	it	is	probably	located	in	this	location:

~/.OpenMRS

or

/usr/share/tomcatX/.OpenMRS

After	you	have	finished	configuring	OpenMRS,	reload	the	application	in	the	Web	Application	Manager.	Open	the	login	page,
typically	at	this	URL.

http://localhost:8080/openmrs

If	Tomcat	is	installed	on	another	server	or	another	port,	replace	localhost	or	8080	as	applicable.

Installation	and	Initial	Setup

24

http://download.openmrs.org


Use	the	administrator	username	and	password	you	specified	in	the	configuration	wizard	to	log	in.	If	you	did	not	specify	a
username	and	password,	try	using	the	default	username	admin	and	password	Admin123.

Upgrading	OpenMRS	Enterprise

To	upgrade	a	copy	of	OpenMRS	Enterprise,	do	the	following:

1.	 Use	the	Tomcat	Web	Application	Manager	to	stop	the	previous	version	of	OpenMRS.

2.	 Download	the	most	recent	version	of	OpenMRS	Enterprise.

3.	 Install	OpenMRS	as	described	above.	The	new	version	of	OpenMRS	will	run	with	your	old	data.

Amani	chooses	the	Enterprise	version

Although	Amani	Clinic	is	small,	they	decided	to	install	the	Enterprise	version.	Claudine	is	very	familiar	with	Apache	Tomcat	and
MySQL,	and	decided	she	would	like	more	control	over	the	system.	She	installed	Ubuntu	Linux	on	the	physical	server,	then
installed	Java	6,	MySQL,	and	Tomcat.	After	doing	so,	she	downloaded	the	openmrs.war	file	and	installed	it	in	the	Tomcat
application	server.	Excluding	download	time	for	the	software,	she	was	able	to	complete	the	process	in	less	than	one	hour.

Installation	and	Initial	Setup

25



OpenMRS	Information	Model
Reference	books	line	a	shelf	in	a	rural	African	clinic.	

This	chapter	explains	terms	and	concepts	which	are	useful	to	understand	as	you	install	and	use	OpenMRS.

Data

The	actual	information	you	want	to	record	in	OpenMRS	is	called	Data.	Examples	of	Data	in	OpenMRS	are	Patients,	Encounters,
and	Observations.	To	support	this	data,	and	describe	its	meaning,	you	need	additional	Metadata.

When	a	user	deletes	a	piece	of	data	in	OpenMRS,	the	information	actually	remains	in	the	database.	It	is	marked	as	voided,	so	that
it	will	not	show	up	in	the	interface,	but	it	is	not	immediately	deleted	from	the	database.	If	a	user	deletes	a	piece	of	data	by
accident,	an	administrator	canunvoid	it	to	return	it	to	the	system.	To	permanently	delete	data	from	the	database,	an	administrator
must	purge	that	data.	Typically,	this	should	never	be	done	in	a	production	system.

Metadata
The	fundamental	expectation	of	OpenMRS's	design	is	that	you	will	customize	it	for	your	clinical	program's	use	case.	The	system
has	no	built-in	idea	of	the	patient's	weight	or	seeing	the	patient	in	an	outpatient	visit.	Instead,	you	can	configure	these	things
yourself,	to	match	your	project's	workflow.	Generally	speaking,	the	things	that	you	need	to	configure	in	order	to	describe	the	real
patient	information	you	will	be	capturing	are	referred	to	as	metadata.	An	example	of	a	piece	of	metadata	is	a	Location	that
represents	a	hospital.

An	administrator	may	also	retire	metadata	in	OpenMRS.	This	does	not	mean	that	the	metadata	is	deleted,	but	rather	that	it	is	not
intended	to	be	used	going	forward.	Old	information	that	refers	to	the	retired	metadata	remains	valid.	An	administrator	may
unretire	metadata	if	it	becomes	relevant	to	active	use	again.	If	no	actual	data	refers	to	a	piece	of	metadata,	an	administrator	may
purge	the	metadata	to	permanently	remove	it	from	the	database.

OpenMRS	Information	Model

26



For	example,	the	hospital	you	refer	patients	to	closes.	Therefore,	you	can	no	longer	refer	patients	there.	This	Location	can	now	be
retired	in	OpenMRS.	This	would	not	invalidate	the	fact	that	many	patients	were	referred	there	in	the	past.

Concepts	and	concept	dictionary

The	most	important	part	of	the	system's	metadata	is	the	Concept	Dictionary,	which	is	a	list	of	all	the	medical	and	program-
related	terms	that	you	will	use	as	questions	and	answers	in	Observations.	This	dictionary	does	not	need	to	be	complete	when	you
begin	using	OpenMRS.	You	should	expect	new	terms	to	be	added	and	old	terms	to	be	retired	as	your	use	of	the	system	evolves.	It
is	better	to	start	with	a	pre-populated	Concept	Dictionary,	rather	than	starting	from	scratch	yourself.	See	the	chapter	"Sharing
Concepts	and	Metadata"	for	more	details.

Every	question	you	ask	about	a	patient	needs	to	be	defined	by	a	Concept.	(For	example,	to	record	a	patient's	weight	you	need	a
concept	like	Weight	in	kilograms.)

If	you	want	to	ask	a	question	that	has	a	fixed	set	of	coded	answers,	those	answers	are	also	Concepts.	(For	example,	the	question
concept	Blood	Type	may	have	4	different	answer	concepts:	A,	B,	AB,	and	O)

Persons
Every	individual	who	is	referred	to	in	a	patient	record	in	OpenMRS	is	stored	in	the	system	as	a	Person.	These	include	Patients,
any	patient	relative	or	caretaker,	Providers,	and	Users.

All	Persons	have	these	characteristics.

Names

A	person	can	have	one	or	more	names,	one	of	which	must	be	marked	as	the	preferred	name.	The	preferred	name	will	be
displayed	in	search	results	and	patient	screens.

Addresses

A	person	may	have	zero	or	more	contact	addresses.	You	may	configure	the	format	of	these	addresses	for	your	particular	locale.

Person	Attributes

To	support	your	local	needs,	you	can	define	additional	pieces	of	information	about	the	people	in	your	system,	on	top	of	those	that
are	natively	supported	by	OpenMRS.	You	can	define	the	datatype	of	a	Person	Attribute,	as	well	as	any	constraints	on	the	possible
values,	using	metadata.	This	metadata	is	called	a	Person	Attribute	Type.

Person	Attributes	are	suitable	for	storing	other	information.	But	historical	values	of	person	attributes	are	not	retained.	For
example,	you	should	use	a	person	attribute	to	record	a	patient's	contact	telephone	number.	This	information	may	change,	but	if	it
does	so,	the	system	need	only	store	the	most	recent	value,	and	need	not	retain	previous	values.	It	is	not	appropriate	to	use	a	person
attribute	to	store	something	like	the	patient's	height,	which	is	recorded	at	a	given	point	in	time,	but	can	be	expected	to	change	and
should	be	tracked	as	it	does	so.

Patients
Anyone	who	receives	care	in	OpenMRS	must	be	a	Patient	(for	example,	anyone	who	has	an	Encounter	or	who	is	enrolled	in	a
Program).	Every	Patient	must	have	at	least	one	Identifier,	which	is	explained	below.

A	Patient	is	also	a	Person,	meaning	they	must	have	at	least	one	name	and	they	may	have	addresses.

OpenMRS	Information	Model

27



Patient	Identifier

The	Patient	Identifier	is	a	medical	record	number	assigned	by	your	facility,	used	to	identify	and	re-identify	the	patient	on
subsequent	visits.

A	Patient	Identifier	Type	defines	the	format	of	a	particular	kind	of	patient	identifier.	For	example,	you	might	define	thatAmani
ID	is	an	identifier	type	that	is	required	for	every	patient;	the	format	is	2	letters	followed	by	6	digits	and	uses	a	particular	check
digit	algorithm.

A	Check	Digit	is	an	extra	digit	that	is	added	to	the	end	of	an	identifier,	and	depends	on	the	rest	of	the	identifier.	It	allows
OpenMRS	to	determine	whether	an	identifier	has	been	mistyped.	For	example	using	a	Luhn	check	digit,	"1234-1"	is	valid,	but
"1234-5"	is	incorrect.	It	is	a	strongly	recommended	best	practice	to	use	check	digits	in	all	patient	identifiers	that	you	assign.	For
more	information	about	check	digits,	see	https://en.wikipedia.org/wiki/Check_digit.

Relationships

A	Relationship	is	a	bidirectional	link	between	two	Persons	in	OpenMRS.

The	metadata	that	describes	a	particular	kind	of	relationship	is	a	Relationship	Type.	It	defines	the	names	of	each	direction	of	the
relationship.	Typical	Relationship	Types	are	Parent/Child	and	Doctor/Patient.

At	the	Amani	Clinic,	it	is	necessary	to	use	relationships	to	link	a	mother's	patient	record	to	the	patient	record	of	her	children.	One
might	also	use	relationships	to	record	the	link	between	a	patient	and	their	primary	care	provider.

Visits

AVisit	in	OpenMRS	represents	exactly	what	it	sounds	like:	a	time	period	when	a	patient	is	actively	interacting	with	the	healthcare
system,	typically	at	a	location.	The	metadata	differentiating	different	types	of	visits	is	a	Visit	Type.	Visit	Types	are	displayed	in
the	user	interface,	and	can	be	searched	against.

A	visit	contains	encounters,	which	store	more	granular	data	about	treatments	or	services.

At	the	Amani	Clinic,	a	patient	might	typically	check-in	at	registration,	be	seen	by	a	doctor,	and	receives	medication	dispensed	in
the	pharmacy.	This	would	be	recorded	as	one	visit	of	type	of	Outpatient,	and	contain	three	encounters	(Registration,
Consultation,	and	Dispensing).

Encounters

A	moment	in	time	where	a	patient	is	seen	by	providers	at	a	location,	and	data	are	captured.	Generally	speaking,	every	time	you
enter	a	form	in	OpenMRS	this	creates	an	Encounter.	Encounters	typically	belong	to	a	visit,	but	they	may	also	stand	alone.

The	metadata	that	describes	a	kind	of	encounter	is	an	Encounter	Type.	These	are	displayed	in	the	user	interface,	and	you	may
also	search	against	them.

OpenMRS	Information	Model

28

https://en.wikipedia.org/wiki/Check_digit


During	a	typical	Amani	Clinic	Outpatient	Visit,	a	patient	checks	in	at	registration,	is	seen	by	a	doctor,	and	receives	meds
dispensed	in	the	pharmacy.	This	would	be	recorded	as	one	visit	containing	three	encounters,	whose	types	are	Registration,
Consultation,	and	Dispensing.

Providers

A	Provider	is	a	person	who	provides	care	or	services	to	patients.	A	provider	may	be	a	clinician	like	a	doctor	or	nurse,	a	social
worker,	or	a	lab	tech.	Generally	speaking,	any	healthcare	worker	that	a	patient	can	have	an	encounter	with	is	a	provider.

Providers	may	have	full	records	in	OpenMRS	as	persons,	or	they	may	just	be	a	simple	name	and	ID	number.

Locations

A	Location	is	a	physical	place	where	a	patient	may	be	seen.

Locations	may	have	a	hierarchy,	for	example	Children's	Ward	might	be	a	location	within	the	location	Amani	Clinic.

You	might	also	store	physical	areas	(for	example	Eastern	Province,	or	California)	as	Locations.	You	should	not	use	locations	to
represent	logical	ideas	like	All	District	Hospitals.

Observations

An	Observation	is	one	single	piece	of	information	that	is	recorded	about	a	person	at	a	moment	in	time.

Every	observation	has	a	Concept	as	its	question,	and	depending	on	the	datatype	of	the	concept,	it	has	a	value	that	is	a	number,
date,	text,	Concept,	etc.

Most	of	the	information	you	store	in	OpenMRS	is	in	the	form	of	Observations,	and	most	Observations	happen	in	an	Encounter.
When	you	enter	a	form	in	OpenMRS,	typically	one	Encounter	is	created	with	anywhere	between	tens	or	hundreds	of
Observations.

Note	that	an	individual	Observation	is	valid	only	at	one	moment	in	time,	and	it	does	not	carry	forward.	You	may	query	the	system
for	the	last	observation	for	pregnancy	status	but	this	does	not	tell	you	whether	or	not	the	patient	is	pregnant	at	any	point	after	the
moment	of	that	observation.

Examples	of	observations	include	Serum	Creatinine	of	0.9mg/dL	or	Review	of	cardiopulmonary	system	is	normal.

Observation	groups

Sometimes	a	single	Observation	is	not	sufficient	to	capture	an	entire	piece	of	patient	information,	and	you	need	to	use	multiple
Observations	that	are	grouped	together.

For	example,	recording	that	a	patient	had	a	rash	as	an	allergic	reaction	to	penicillin	would	need	to	be	stored	as	two	observations
plus	a	third	one	that	groups	the	previous	two	together:

1.	 Concept	=	"Allergen",	coded	value	=	"Penicillin",	group	=	(3)

2.	 Concept	=	"Reaction",	coded	value	=	"Rash",	group	=	(3)

3.	 Concept	=	"Allergic	Reaction	Construct",	group	members	=	(1),	(2)

Orders

OpenMRS	Information	Model

29



An	Order	is	an	action	that	a	provider	requests	be	taken	regarding	a	patient.

For	example	a	provider	could	order	a	Complete	Blood	Count	laboratory	panel	for	a	patient.

An	Order	only	records	an	intention,	not	whether	or	not	the	action	is	carried	out.	The	results	of	an	Order	are	typically	recorded	later
as	Observations.

Prescribing	a	medication	is	a	Drug	Order.	A	drug	order	can	be	placed	for	a	generic	drug,	represented	by	a	Concept	(for	example,
500mg	of	Ciprofloxacin,	twice	a	day).	If	you	are	using	OpenMRS	to	manage	a	formulary	of	specific	medications	(i.e.,	Drugs	in
OpenMRS),	you	may	also	record	Drug	Orders	against	those.	For	example,	a	drug	order	might	be	One	500mg	tablet	of
Ciprofloxacin,	twice	a	day.

Allergy	lists

OpenMRS	lets	you	manually	maintain	an	Allergy	List	for	a	patient,	including	the	allergen,	reaction,	severity,	etc.

This	list	is	managed	separately	from	Observations:	observing	an	allergic	reaction	to	a	drug	does	not	automatically	add	an	Allergy
to	the	list.

Unlike	an	Observation	(which	happens	at	one	moment	in	time),	an	Allergy	is	longitudinal	data,	with	start	and	end	dates.

Problem	lists

OpenMRS	lets	you	manually	maintain	a	Problem	List	for	a	patient.	This	list	is	managed	separately	from	Observations:	observing
that	the	patient	has	"Diagnosis	Present	=	Diabetes"	does	not	automatically	add	a	problem	to	the	list.	Unlike	an	observation	(which
happens	at	one	moment	in	time),	a	problem	is	longitudinal	data,	with	start	and	end	dates.

Program	enrollments,	workflows,	and	states

A	Program	represents	an	administrative	program	or	study	that	a	patient	may	be	enrolled	in	(for	example,	Child	Nutrition	Study
or	DOTS	Tuberculosis	Treatment	Program).

A	Program	Enrollment	represents	the	fact	that	a	patient	is	enrolled	in	one	of	these	programs	over	a	time	period	at	a	Location.
This	is	longitudinal	data	with	a	start	date	and	end	date.

A	Program	can	also	define	administrative	Workflows,	and	possible	States	the	patient	may	have	within	those	workflows.	An
Initial	State	is	one	that	a	patient	is	allowed	to	start	in	when	they	are	first	enrolled	in	a	program.	A	Terminal	State	is	one	that
closes	the	program	enrollment	if	the	patient	is	placed	in	it.

For	example	a	research	study	on	infant	nutrition	might	have	a	workflow	called	Study	Enrollment	Status	with	the	states:

Patient	Identified	(initial)

Mother	Consented	to	Study

Study	Complete	(terminal)

Lost	to	Followup	(terminal)

These	states	are	meant	to	represent	administrative	statuses,	not	clinical	ones.	For	example	putting	a	patient	in	a	Loss	to	Followup
state	represents	an	official	declaration	and	will	not	happen	automatically	even	if	no	encounters	are	entered	for	the	patient	for
several	months.

Forms

OpenMRS	Information	Model

30



A	Form	represents	an	electronic	form	that	may	be	used	for	entering	or	viewing	data.	The	basic	OpenMRS	system	does	not	define
a	specific	technology	for	entering	forms.	You	will	need	to	use	one	of	the	community-developed	form	entry	modules.	See	the
chapter	"Data	Entry"	for	more	details.

The	Form	Entry	(Infopath)	and	XForms	modules	rely	on	a	Form	Schema,	where	you	define	which	Concepts	are	used	on	the
Form.	The	HTML	Form	Entry	module	does	not	require	you	to	manage	the	schema.

Users,	roles,	and	privileges

A	User	in	OpenMRS	is	an	account	that	a	person	may	use	to	log	into	the	system.

The	real-life	person	is	represented	by	a	Person	record	in	OpenMRS,	and	a	person	may	have	more	than	one	user	account.	If	you
want	a	patient	to	be	able	to	view	her	own	record	in	OpenMRS,	then	you	need	to	create	a	user	account	and	link	it	to	the	patient.

A	Role	represents	a	group	of	privileges	in	the	system.	Roles	may	inherit	privileges	from	other	roles,	and	users	may	have	one	or
more	roles.

A	Privilege	is	an	authorization	to	perform	a	particular	action	in	the	system.	The	list	of	available	privileges	are	defined	by	the	core
system	and	by	add-on	modules	(for	example,	Delete	Patients	and	Manage	Encounter	Types),	but	you	need	to	configure	which
roles	have	which	privileges	while	you	are	configuring	your	system.

The	information	model	in	use	at	Amani	Clinic

A	patient	named	Asaba	arrives	at	Amani	Clinic,	where	the	registration	clerk	James	creates	her	electronic	record	and	stores	her
contact	phone	number	as	312-555-7890.	On	paper	the	Nurse,	Kissa,	records	Asaba's	weight	as	61.5kg	and	orders	a	pregnancy	test.
James	enters	these	onto	an	electronic	screen.

From	the	perspective	of	the	OpenMRS	model,	we	have	the	following	metadata:

The	nurse,	Kissa	(a	Provider)
The	registration	clerk,	James	(a	User)
Contact	Phone	Number	(a	Person	Attribute	Type)
Weight,	in	kilograms	(a	Concept,	with	class	Finding	and	datatype	Numeric)
Urine	Pregnancy	Test	(a	Concept,	with	class	Test)
Amani	Clinic	(a	Location)
Outpatient	Visit	(an	Encounter	Type)
Outpatient	Triage	Form	(a	Form)

When	Asaba	is	first	seen	at	the	registration	desk,	James	creates	the	following	data:

A	Patient	(Asaba)
A	Person	Attribute	(type	=	Contact	Phone	Number,	value	=	312-456-7890).

After	Asaba	sees	the	nurse,	who	gives	a	paper	form	to	James,	he	creates	more	data:

An	Encounter	with:

OpenMRS	Information	Model

31



patient	=	Asaba
type	=	Outpatient	Visit
form	=	Outpatient	Triage	Form
location	=	Amani	Clinic
provider	=	Nurse	Kissa
creator	=	Registration	Clerk	James

An	Observation	(in	that	encounter),	of	Weight	in	kilograms	=	61.5.

An	Order	(in	that	encounter),	for	Urine	Pregnancy	Test

OpenMRS	Information	Model

32



Getting	Around	the	User	Interface
An	OpenMRS	implementer-programmer	gives	a	demonstration	of	the	system	as	his	clinic.	

This	chapter	gives	a	brief	overview	of	key	parts	of	the	OpenMRS	user	interface,	which	will	be	helpful	as	you	read	the	chapters	to
follow.

Logging	in	to	the	system

OpenMRS	runs	as	a	web	application,	meaning	you	use	it	via	a	web	browser.	Before	you	can	access	any	pages	in	the	system,	you
need	to	log	in.	To	do	this	the	first	time,	you	will	need	to	know	the	administrator	password	that	you	chose	during	first-time	setup.
Refer	to	the	chapter	"Installation	and	Initial	Setup"	for	those	details.

Users	that	forget	their	password	may	reset	it	if	they	have	configured	a	secret	question	and	know	the	answer.	TheSign	up	link	is
provided	by	theRequest	Account	module,	if	you	have	it	installed.

Getting	Around	the	User	Interface

33



Home

In	the	default	installation	of	OpenMRS,	all	users	see	the	same	home	page	after	logging	in.	To	customize	different	home	pages	for
different	types	of	users,	you	can	use	theRole	Based	Home	Pagemodule.

As	shown	in	the	OpenMRS	home	page	above,	all	pages	allow	you	to:

1.	 Log	outand	edit	your	profile,	or

2.	 Change	your	language	for	the	current	session.

You	can	configure	the	allowed	languages	via	a	setting	in	theAdministration	>	Maintenance	>	Settingspage.

Administration

As	a	system	administrator	or	manager	for	an	OpenMRS	installation,	you	will	frequently	need	to	access	the	configuration	and
administration	functions	accessible	through	theAdministrationpage.

Getting	Around	the	User	Interface

34



1.	 You	can	access	theAdministrationpage	from	anywhere	in	the	application	by	clicking	its	link	in	the	top-right	of	the	screen.

2.	 Configuration	pages	for	the	OpenMRS	core	functionality	are	listed	in	the	left	and	center	columns.

3.	 Configuration	pages	for	functionality	in	add-on	modules	are	listed	in	the	right	column.

4.	 You	add/remove/start/stop	add-on	modules	from	theManage	Modules	page.

Viewing	and	creating	patients
One	of	the	most	common	actions	for	non-administrative	users	of	the	system	is	to	find	and	open	existing	patient	records.	If	the
desired	patient	record	is	not	found,	users	may	be	able	to	create	new	ones	if	they	have	sufficient	privileges.

You	can	search	for	a	patient	by	ID	number.	Clicking	on	the	search	result	will	open	that	patient's	dashboard.	If	a	user	does	not	find
a	patient	by	ID	number	or	name,	you	may	create	a	new	patient.

Getting	Around	the	User	Interface

35



Patient	dashboard

Data	entry	staff	will	spend	a	lot	of	time	on	the	patient	dashboard	page.	This	gives	access	to	different	parts	of	a	patient's	record	and
allows	you	to	enter	forms	into	the	record.

The	workflow	of	the	patient	dashboard	page	is	not	efficient	for	a	clinician	who	wants	to	access	a	patient's	record	at	the	point	of
care.	To	support	those	workflows	you	should	consider	downloading	and	installing	the	Clinical	Summarymodule	or	theHTML
Form	Flowsheetmodule.

The	patient	dashboard	page	is	described	in	more	detail	in	the	chapter	entitled	"The	Patient	Dashboard	In	Depth".

Getting	Around	the	User	Interface

36



Getting	Around	the	User	Interface

37



Customizing	OpenMRS	with	Plug-in	Modules

OpenMRS	has	a	modular	architecture,	which	allows	special	functionality	to	be	easily	added	or	removed	from	the	system.	Modules
have	full	access	to	the	system	and	can	modify	or	enhance	the	behavior	of	the	system.	For	example,	the	Sync	module	adds	the
ability	for	an	OpenMRS	server	to	synchronize	its	data	with	other	OpenMRS	servers;	the	HTML	Form	Entry	module	provides	a
way	to	create	web-based	forms	for	collecting	data;	and	the	Flowsheet	module	adds	a	new	way	for	viewing	information.	Modules
also	provide	a	mechanism	for	adapting	OpenMRS	to	local	needs.	For	more	information	about	published	modules	visit	the
OpenMRS	Wiki:

https://wiki.openmrs.org/display/docs/Modules/

Module	repository
You	can	view	available	modules	in	the	OpenMRS	Module	Repository:

http://modules.openmrs.org/

It	is	a	place	where	you	can	find	published	modules.	Each	module	has	a	page	with	a	description,	a	link	for	downloading,	and	a	link
to	the	module's	documentation.

Some	modules	may	be	under	development,	but	not	yet	published	in	the	module	repository.	Many	of	these	can	be	seen	by	browsing
GitHub	for	repositories	starting	with	"openmrs-module-"	in	their	name.	Many	community	modules	can	be	found	under	the
OpenMRS	organization	on	GitHub:

https://github.com/openmrs/

Managing	modules

Customizing	OpenMRS	with	Plug-in	Modules

38

https://wiki.openmrs.org/display/docs/Modules
http://modules.openmrs.org/
https://github.com
https://github.com/openmrs/


You	can	see	available	modules	under	Administration	page,	Manage	Modules.	The	listing	contains	all	the	installed	modules.	You
can	see	their	status	(if	they	are	started,	stopped	or	failed	to	start)	as	well	as	uninstall	them.

To	uninstall	a	module:

1.	 Stop	the	module

2.	 Start	the	module

3.	 Uninstall	the	module

A	module	is	distributed	as	a	single	file	with	the	.omod	extension.	You	can	install	it	from	the	dedicated	Manage	Modules	section
on	the	Administration	page.

You	can	either	point	to	a	local	path	to	the	.omod	file	or	find	and	install	a	module	directly	from	the	Install	from	Module
Repository	section	which	connects	to	the	module	repository.

To	install	a	module:

Customizing	OpenMRS	with	Plug-in	Modules

39



1.	 Choose	a	file	and	click	Upload

2.	 Search	for	a	module	by	name

3.	 Install	the	chosen	module

If	uploads	are	not	allowed	from	the	web,	you	can	copy	the	.omod	file	into	the	folder:

~/.OpenMRS/modules

(where	~/.OpenMRS	is	assumed	to	be	the	Application	Data	directory	which	the	running	OpenMRS	is	currently	using.	You	can
find	the	exact	location	under	Administration	>	Module	Properties.)	After	moving	the	file	to	that	location,	restart	OpenMRS.
The	module	will	be	loaded	and	started.

Bundled	modules

OpenMRS	is	delivered	with	some	bundled	modules	which	are	included	in	a	standard	installation.	The	list	may	differ	from	version
to	version.	Some	examples:

HTML	Form	Entry

Allows	anyone	with	basic	HTML	programming	skills	and	knowledge	of	the	OpenMRS	system	to	create	forms	which	can	be
entered	without	any	proprietary	tools	directly	from	a	web	browser.	It	is	a	preferred	form	entry	module.	HTML	Forms	allow	a	lot
of	control	over	the	form's	layout.	https://wiki.openmrs.org/display/docs/HTML+Form+Entry+Module

XForms

Allows	data	entry	to	be	done	directly	from	any	JavaScript	enabled	browser.	The	module	converts	an	OpenMRS	form	to	an
XForm.	XForms	are	well	suited	to	forms	that	will	be	filled	out	on	mobile	devices.

https://wiki.openmrs.org/display/docs/XForms+Module

HTML	Widgets

Provides	a	set	of	reusable	HTML	form	field	widgets	that	encapsulate	the	common	input	requirements	for	OpenMRS.	It	is	meant	to
be	something	that	developers	can	utilize	in	their	code.	https://wiki.openmrs.org/display/docs/HTML+Widgets+Module

Reporting

Provides	a	feature-rich	and	user-friendly	web	interface	for	managing	reports	within	OpenMRS.
https://wiki.openmrs.org/display/docs/Reporting+Module

Reporting	Compatibility

Contains	pages	and	features	that	were	previously	included	into	OpenMRS	core	code	itself	and	are	needed	to	run	the	Reporting
module.	It	was	written	for	the	1.5	and	later	releases	of	OpenMRS.
https://wiki.openmrs.org/display/docs/ReportingCompatibility+Module

Other	popular	modules

Clinical	Summary

Allows	you	to	create	clinical	summaries.	https://wiki.openmrs.org/display/docs/Clinical+Summary+Module

Customizing	OpenMRS	with	Plug-in	Modules

40

https://wiki.openmrs.org/display/docs/HTML+Form+Entry+Module
https://wiki.openmrs.org/display/docs/XForms+Module
https://wiki.openmrs.org/display/docs/HTML+Widgets+Module
https://wiki.openmrs.org/display/docs/Reporting+Module
https://wiki.openmrs.org/display/docs/ReportingCompatibility+Module
https://wiki.openmrs.org/display/docs/Clinical+Summary+Module


Groovy

Was	created	as	a	proof	of	concept	(for	embedding	Groovy	into	OpenMRS)	and	to	serve	as	a	base	module	for	other	modules	that
want	to	use	Groovy	scripting	as	well.	https://wiki.openmrs.org/display/docs/Groovy+Module

HTML	Form	Flowsheet

Allows	you	to	generically	model	a	paper	flowsheet.	Provides	basic	functionality	for	embedding	small	HTML	Forms	inside	of
larger	HTML	Forms,	where	each	small	HTML	Form	represents	one	row	in	a	patient	chart.	Additionally,	the	module	allows	you	to
specify	any	number	of	tabs	in	a	tab-based	layout,	each	containing	a	distinct	HTML	Form.
https://wiki.openmrs.org/display/docs/HtmlFormFlowsheet+Module

HTML	Form	Entry	Designer

WYSIWYG	Form	Designer	for	the	HTML	Form	Entry	module.
https://wiki.openmrs.org/display/docs/HTML+Form+Entry+Designer+Module

ID	Generation

Provides	a	facility	for	managing	identifier	generation	and	allocation	within	an	OpenMRS	implementation.	Introduces	different
identifier	generation	strategies	including	automatic	and	pooled.	https://wiki.openmrs.org/display/docs/Idgen+Module

Metadata	Sharing

Allows	all	kinds	of	metadata	(concepts,	HTML	forms,	locations,	roles,	programs,	etc.)	to	be	exchanged	between	different
OpenMRS	installations.	https://wiki.openmrs.org/display/docs/Metadata+Sharing+Module

Request	Account

Allows	users	to	request	their	own	accounts,	specifying	their	own	preferred	username	and	preferred	password.	An	administrator
can	then	approve	or	deny	pending	account	requests.	https://wiki.openmrs.org/display/docs/Request+Account+Module

REST	Webservices

Exposes	the	OpenMRS	API	as	REST	web	service.	https://wiki.openmrs.org/display/docs/REST+Web+Services+API+For+Clients

Role-based	Home	Page

Allows	for	administrators	to	define	a	custom	"home	page"	for	each	defined	role	within	the	system.	These	home	pages	may	be
simply	pages	that	already	exist,	and	which	particular	users	would	be	best	served	to	have	as	their	default.	For	example,	system
administrators	may	want	the	Administration	page	as	their	default	home.	Alternatively,	administrators	can	"author"	new	pages
within	the	running	application	for	their	users.	https://wiki.openmrs.org/display/docs/Role+Based+Homepage+Module

Synchronization

Fits	in	scenarios	when	you	have	multiple	sites	using	OpenMRS	with	separate	databases	and	you	want	them	to	copy	data	to	each
other	that	will	keep	them	synchronized.	https://wiki.openmrs.org/display/docs/Sync+Module

Writing	your	own	module

Customizing	OpenMRS	with	Plug-in	Modules

41

https://wiki.openmrs.org/display/docs/Groovy+Module
https://wiki.openmrs.org/display/docs/HtmlFormFlowsheet+Module
https://wiki.openmrs.org/display/docs/HTML+Form+Entry+Designer+Module
https://wiki.openmrs.org/display/docs/Idgen+Module
https://wiki.openmrs.org/display/docs/Metadata+Sharing+Module
https://wiki.openmrs.org/display/docs/Request+Account+Module
https://wiki.openmrs.org/display/docs/REST+Web+Services+API+For+Clients
https://wiki.openmrs.org/display/docs/Role+Based+Homepage+Module
https://wiki.openmrs.org/display/docs/Sync+Module


This	section	covers	basics	of	writing	your	own	module.	We	encourage	to	contribute	modules	you	write	to	the	Module	Repository.
You	can	also	use	our	code	repository	for	your	module.	For	more	information,	please	visit	this	page

https://wiki.openmrs.org/display/docs/Creating+Modules

In	order	to	develop	and	test	a	module,	you	will	need	to	have	OpenMRS	installed	in	a	version	on	which	you	want	to	run	your
module.

It	is	best	to	use	a	dedicated	Maven	archetype	to	create	a	new	module.	Before	you	start	you	will	need	to	install	Maven.	See	the
Maven	web	site	at	http://maven.apache.org/	for	more	instructions.

The	next	step	is	to	update	the	settings.xml	file	to	point	Maven	to	the	Maven	Module	Archetype.	You	can	find	the	file	in	one	of
the	following	locations:

Linux:	~/.m2

Windows	XP:	C:\Documents	and	Settings\user_name.m2

Windows	Vista/7:	C:\Users\user_name.m2

If	the	settings	file	does	not	exist	you	need	to	create	one.	Add	the	following	content:

<settings	xmlns="http://maven.apache.org/SETTINGS/1.0.0"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0

																						http://maven.apache.org/xsd/settings-1.0.0.xsd">

		<pluginGroups>

				<pluginGroup>org.openmrs.maven.plugins</pluginGroup>

		</pluginGroups>

		<profiles>

				<profile>

						<id>OpenMRS</id>

						<activation>

								<activeByDefault>true</activeByDefault>

						</activation>

						<properties>

								<archetypeCatalog>http://mavenrepo.openmrs.org/nexus/service/local/repositories/releases/content/archet

ype-catalog.xml</archetypeCatalog>

						</properties>

						<repositories>

								<repository>

										<id>openmrs-repo</id>

										<name>OpenMRS	Nexus	Repository</name>

										<url>http://mavenrepo.openmrs.org/nexus/content/repositories/public</url>

								</repository>

						</repositories>

						<pluginRepositories>

								<pluginRepository>

										<id>openmrs-repo</id>

										<name>OpenMRS	Nexus	Repository</name>

										<url>http://mavenrepo.openmrs.org/nexus/content/repositories/public</url>

										<snapshots>

												<enabled>false</enabled>

										</snapshots>

								</pluginRepository>

						</pluginRepositories>

				</profile>

		</profiles>

</settings>

Maven	is	a	command	line	tool,	so	open	a	console	and	enter	the	folder	in	which	to	create	a	project	for	your	new	module.	The
command	you	need	to	run	is:

Customizing	OpenMRS	with	Plug-in	Modules

42

https://wiki.openmrs.org/display/docs/Creating+Modules
http://maven.apache.org/


mvn	module-wizard:generate

Follow	the	steps	of	the	wizard	by	answering	the	questions.	At	the	end,	a	new	Maven	project	will	be	generated.	To	build	it	you	just
need	to	enter	the	project	folder	and	run:

mvn	install

You	will	find	the	produced	.omod	file	for	your	module	in	the	directory	omod/target.

Developing	a	module	requires	from	you	to	be	familiar	with	the	Spring	framework.	Read	the	Spring	web	site	at
http://www.springsource.com/for	more	details.	There	are	also	a	few	things	specific	to	the	OpenMRS	platform	which	you	will	need
to	remember:

The	Spring	web	context	file	can	be	found	at	omod\src\main\resources\webModuleApplicationContext.xml.

Modules	are	able	to	add	and	modify	tables	in	the	OpenMRS	database.	The	files	omod\src\main\resources\sqldiff.xml	and
omod\src\main\resources\liquibase.xml	hold	the	SQL	commands	which	can	be	executed	as	a	module	is	installed.

Modules	can	extend	OpenMRS	core	JSP	pages	via	extension	points.	A	module	registers	an	extension	in
omod\src\main\resources\config.xml	for	each	extension	point	in	the	system	to	which	it	wants	to	add	content.

You	should	find	extension	points	in	the	JSP	pages	you	want	to	extend.	Look	for:

<openmrs:extensionPoint	pointId="..."

It	is	best	to	learn	by	example,	so	you	should	look	at	some	other	modules	in	the	OpenMRS	code	repository	for	code	snippets	to
reuse	in	your	own	work.	Consider	examining	the	Webservices.rest	module.

Customizing	OpenMRS	with	Plug-in	Modules

43

http://www.springsource.com/


Managing	Concepts	and	Metadata
Having	well-defined	concepts	is	crucial	for	every	OpenMRS	installation.	OpenMRS	is	delivered	with	just	a	few	basic	concepts
and	it	is	up	to	you	to	gather	the	rest.

Creating	concepts	is	a	complex	task	which	requires	expertise	and	experience	so	we	do	not	recommend	doing	it	on	your	own.	It	is
best	to	contact	our	community	and	use	some	of	existing	concept	dictionaries	like	MVP	or	MCL.	For	more	information	on	how	to
get	in	touch	with	the	right	people,	see	the	Getting	Help	from	the	OpenMRS	Community	chapter.

You	can	either	enter	concepts	on	your	own	manually	or	use	a	tool	like	the	Metadata	Sharing	Module	to	import	them.	In	this
chapter,	we	will	present	how	to	enter	concepts	manually	via	the	web	interface.

Concept	class
To	start	with	you	will	need	to	setup	Concept	Classes.	The	standard	installation	includes	around	15	predefined	concept	classes.	To
view	them	enter	the	Administration	page	>	Manage	Concept	Classes.

1.	 Add	a	new	Concept	Class

2.	 Click	to	edit	an	existing	Concept	Class

You	will	see	a	list	with	names	and	descriptions.	You	can	edit	them	by	clicking	on	a	name	and	also	delete	by	selecting	check-boxes
next	to	their	names.	Note	that	you	cannot	delete	concept	classes	that	are	used	in	concepts	already.	There	is	also	a	link	Add
Concept	Class	to	enter	new	ones.

Concept	datatype

Concept	Datatypes	are	purposed	to	indicate	different	formats	of	data	stored	in	concepts.	They	are	predefined	and	read-only.	You
can	view	them	under	Administration	>	Manage	Concept	Datatypes.

Managing	Concepts	and	Metadata

44



Concept

To	view	concepts	available	in	your	system	click	Dictionary	in	the	top	menu.	You	will	be	able	to	search	for	particular	concepts	by
name	or	ID.	There	is	also	a	check-box	that	allows	to	search	for	retired	concepts	which	are	not	supposed	to	be	used	anymore	or	are
replaced	with	new	ones.	You	can	also	enter	a	new	concept	from	here	clicking	Add	new	Concept.

Managing	Concepts	and	Metadata

45



1.	 Open	concept	dictionary

2.	 Add	a	new	concept

3.	 Search	for	concepts

4.	 Search	results

Let's	create	a	concept	to	represent	ANTENATAL	VISIT	REASON.	We	will	use	it	later	in	the	book	in	a	data	entry	form.	The
form	for	creating	a	concept	allows	you	to	enter	Fully	Specified	Name	as	well	as	synonyms.	You	can	add	synonyms	with	Add
Synonym	button	[2].	At	least	one	of	the	names	needs	to	be	marked	as	Preferred	with	the	radio	button	next	to	it.

While	creating	a	new	concept	you	need	to	decide	on	datatype.	In	this	case	it	will	be	a	coded	concept	that	is	you	will	provide	a	list
of	answers.	Answers	need	to	be	defined	as	concepts.	You	need	to	create	them	beforehand	or	else	add	them	later.

Managing	Concepts	and	Metadata

46



1.	 Switch	between	languages

2.	 Add	a	synonym

3.	 Select	datatype

4.	 Edit	a	list	of	answers	(this	section	changes	depending	on	the	chosen	datatype)

Managing	Concepts	and	Metadata

47



5.	 Add	mappings

Concept	mapping

Concept	Mappings	are	added	to	facilitate	managing	concept	dictionaries	and	point	to	other	concepts	which	have	the	same
meaning.	Mappings	are	useful	when	you	need	to	receive	or	send	information	to	external	systems,	letting	you	define	how	your
system's	concepts	relate	to	external	concepts	such	as	standardized	medical	vocabularies	(e.g.,	ICD,	LOINC,	SNOMED).

For	example,	add	a	mapping	to	a	concept	in	the	MCL	dictionary.	You	can	save	the	concept	now	and	create	some	answers.

Repeat	the	steps	and	create	the	concepts	PLANNING	PREGNANCY	and	CURRENTLY	PREGNANT	of	Class	Finding	and
Datatype	Boolean.	The	last	possible	answer	will	be	OTHER	of	Class	Misc	and	Datatype	N/A.	After	creating	three	new	concepts,
you	can	edit	ANTENATAL	VISIT	REASON	and	add	them	as	answers.

Concept	drug
To	view	Concept	Drugs,	go	to	Administration	>	Manage	Concept	Drugs.	You	can	either	enter	a	concept	drug	by	clicking	its
name	to	edit	it,	or	you	can	create	a	new	one	through	the	Add	Concept	Drug	link.	You	must	enter	a	name	and	choose	one	of	the
concepts	of	datatypeDrug.

Metadata
There	are	different	types	of	Metadata	which	need	to	be	managed.	The	list	includes	Locations,	Encounter	Types,	Order	Types,
etc.	You	can	view	and	edit	them	easily	via	the	Administration	page.

Patient	identifier

A	patient	identifier	is	any	unique	number	that	can	identify	a	patient.	Examples	are	a	Medical	Record	Number,	a	National	ID,	a
Social	Security	number,	a	driver's	license	number,	etc.	A	patient	can	have	any	number	of	identifiers.	The	Patient	Identifier	Type
table	defines	what	type	of	identifiers	are	collected	in	your	system.

A	patient	can	have	multiple	identifiers	of	each	type	defined	in	your	system.	For	example,	a	patient	could	have	five	identifiers	of
type	of	"Medical	Record	Number"	because	they	were	seen	at	five	different	hospitals	that	collected	five	different	types	of	IDs.

The	patient	search	screen	searches	across	all	identifier	that	are	still	active	for	a	patient.

New	identifier	types	are	generally	created	if	they	have	different	characteristics.	For	example,	one	identifier	can	be	only	a	string	of
numbers,	another	is	a	number	with	a	hyphen	plus	a	check	digit,	etc.

Identifiers	uniquely	identify	patients	within	the	system.	Different	types	of	identifiers	are	distributed	by	various	health	care
systems.	Some	of	these	systems	will	be	within	your	control,	so	you	will	be	able	to	control	how	identifiers	are	created	and
distributed;	however,	there	will	likely	be	identifiers	that	are	not	within	your	control	but	are	useful	to	record	within	your	system	to
aid	in	patient	identification.

In	order	to	see	predefined	identifier	types,	or	to	add	a	new	one,	go	to	Administration	-	Manage	Identifier	Types.	Let's	examine
OpenMRS	Identification	Number.

Managing	Concepts	and	Metadata

48



The	Regex	Format	and	Description	of	format	fields	are	empty,	but	you	could	add	here	a	regular	expression	to	validate	each
entered	identifier.	For	example:

\d{1,8}-\d

would	allow	1	to	8	digits	followed	by	a	dash	and	a	single	digit.

It	is	also	possible	to	choose	one	of	several	pre-defined	Identifier	validators.	Here	Luhn	CheckDigit	Validator	is	used.	The
purpose	of	check	digits	is	simple.	Any	time	identifiers	(typically	number	+/-	letters)	are	being	manually	entered	via	keyboard,
there	will	be	errors.	Inadvertent	keystrokes	or	fatigue	can	cause	digits	to	be	rearranged,	dropped,	or	inserted.

Check	digits	helps	to	reduce	the	likelihood	of	errors	by	introducing	a	final	digit	that	is	calculated	from	the	prior	digits.	Using	the
proper	algorithm,	the	final	digit	can	always	be	calculated.	Therefore,	when	a	number	is	entered	into	the	system	(manually	or
otherwise),	the	computer	can	instantly	verify	that	the	final	digit	matches	the	digit	predicted	by	the	check	digit	algorithm.	If	the	two
do	not	match,	the	number	is	refused.	The	end	result	is	fewer	data	entry	errors.

Internationalization
Concepts	can	be	easily	internationalized;	that	is	you	can	enter	different	concept	names	for	every	allowed	locale.	The	list	of
allowed	locales	is	stored	in	a	setting	locale.allowed.list	as	comma	separated	language	codes	(for	instanceen,fr,	orde).	You	can	edit
the	setting	from	Administration	>	Maintenance	>	Settings.	See	this	link	for	the	full	list	of	ISO	639.2	language	codes:

Managing	Concepts	and	Metadata

49



https://wiki.openmrs.org/display/docs/Localization+and+Languages

Currently,	metadata	cannot	be	internationalized.

Managing	Concepts	and	Metadata

50

https://wiki.openmrs.org/display/docs/Localization+and+Languages


Sharing	Concepts	and	Metadata
Working	with	OpenMRS	forms	at	Hôpital	Albert	Schweitzer,	Deschapelles,	Haiti.	

Instead	of	creating	concepts,	forms	and	other	metadata	yourself,	you	are	highly	encouraged	to	use	some	which	are	publicly
available.	You	can	use	complete	concept	dictionaries	like	MCL	or	MVP	as	well	as	metadata	packages	which	include	just	a	fraction
of	dictionaries,	forms,	locations,	etc.

Sharing	forms	entails	sharing	associated	concepts	and	other	metadata.	To	facilitate	this	task,	the	Metadata	Sharing	module	was
created.	It	allows	all	kinds	of	metadata	(concepts,	forms,	locations,	roles,	programs,	etc.)	to	be	exchanged	between	different
OpenMRS	installations.

Any	dependent	metadata	will	be	packaged	along	with	the	exported	item.	For	example,	if	you	export	a	concept	which	has	coded
answers,	the	module	will	package	the	initial	concept	along	with	all	the	coded	answer	concepts,	class	and	datatype.	If	you	export	a
form,	it	will	package	the	form	along	with	the	encounter	type,	all	concepts	used	on	that	form,	etc.

The	import	process	is	designed	in	a	way	to	help	identify	items	in	your	system	that	are	semantically	the	same	as	the	ones	included
in	a	package	so	that	you	can	skip	importing	them	and	use	yours.

You	can	find	some	published	forms	at:

https://wiki.openmrs.org/display/RES/Form+Bank

Sharing	Concepts	and	Metadata

51

https://wiki.openmrs.org/display/RES/Form+Bank


Let's	see	an	example	of	importing	a	form	with	the	Metadata	Sharing	module.	The	Amani	Antenatal	History	form	will	be
presented	in	detail	in	the	"Data	Entry"	chapter.

After	installing	the	Metadata	Sharing	module,	go	to	Administration	>	Import	Metadata.

1.	 Import	a	new	package

2.	 See	a	list	of	previously	imported	packages	you	are	subscribing

To	start,	click	the	Import	package	button	and	on	the	next	screen,	point	to	a	file	you	want	to	import.

1.	 Choose	a	local	file	you	want	to	import

2.	 Enter	a	subscription	URL

Sharing	Concepts	and	Metadata

52



The	next	step	is	to	choose	a	trust	level.	As	stated	before,	while	importing	a	package	you	will	have	a	chance	to	use	concepts,
locations,	etc.	which	exist	in	your	system	rather	than	creating	new	ones	from	the	package.	If	you	choose	to	do	so,	you	can	either
overwrite	your	existing	items	or	keep	the	ones	you	already	have.	If	you	choose	Require	Confirmation,	you	will	be	asked	to
review	most	of	the	metadata	before	importing	and	decide	what	you	want	to	do.	The	Trust	Incoming	option	in	most	cases	will
default	to	overwrite	your	existing	metadata	and	will	not	require	confirmation.	Click	Next	to	proceed.

1.	 Items	needing	assessment

2.	 Items	to	be	created

3.	 Items	to	skip

4.	 Items	in	your	system	which	will	be	used	instead

5.	 Items	which	will	be	overwritten

6.	 Opens	the	assessment	screen

7.	 All	items	in	the	package

On	the	next	screen,	you	will	see	some	details	about	the	package	and	clicking	Next	again	will	bring	you	to	the	Import	Summary
page	where	you	can	assess	items.	As	in	our	example,	you	will	have	to	review	twenty-nine	concepts.

Sharing	Concepts	and	Metadata

53



The	assessment	screen	depending	on	the	case	allows	you	to	choose	Create	New,	Skip	if	Possible,	Choose	Existing	-	Keep	Mine,
and	Choose	Existing	-	Overwrite.	If	you	select	Choose	Existing	you	will	be	able	to	search	for	an	existing	item	on	your	system
by	clicking	Choose	replacement.	In	this	example,	you	cannot	select	Create	New	as	it	would	violate	a	restriction	that	there	cannot
be	two	concepts	in	the	system	with	the	same	name.

Once	reviewing	all	the	items	which	need	to	be	assessed,	you	can	import	the	package.

Sharing	Concepts	and	Metadata

54



A	good	source	of	concepts	is	the	Maternal	Concept	Lab:

http://www.maternalconceptlab.com

It	allows	you	to	find	concepts	you	need	and	download	them	as	metadata	packages.	You	can	then	import	them	directly	to	your
OpenMRS	installation	as	needed	with	the	help	of	the	Metadata	Sharing	module.

The	Metadata	Sharing	module	promotes	decentralized	management	of	metadata	where	everyone	can	both	create	and	import
metadata	packages.

Sharing	Concepts	and	Metadata

55

http://www.maternalconceptlab.com/


Configuring	Visits
A	patient	may	receive	several	kinds	of	care	and	services	while	at	a	health	clinic.	For	example,	they	may	see	a	clinician,	have	an	X-
ray	taken,	and	be	given	a	lab	test.	Each	of	these	services	is	an	Encounter,	recorded	in	a	form.	OpenMRS	uses	Visits	to	collect
these	related	encounters	into	one	group.

Visits	are	managed	in	Administration	>	Visits.	Here	you	can	define	the	kinds	of	visits	and	their	attributes,	and	set	the	default
behavior	for	how	visits	are	created.

Manage	Visit	Types

A	Visit	Type	is	a	name	and	description	of	a	kind	of	visit.	Every	visit	has	a	type.	You	should	create	visit	types	that	match	how	your
health	site	classifies	visits,	such	as	"Outpatient,"	"Hospitalization,"	"Dental,"	"Patient	Education,"	or	"TB	Clinic."

Manage	Visit	Attribute	Types

If	you	wish	to	record	extra	information	about	visits,	you	can	create	Visit	Attributes	and	assign	them	to	Visit	Types.	For	example,
you	might	create	attributes	for	"Followup	Visit,"or	"Distance	Patient	Traveled."

Configure	Visits

There	are	several	settings	for	the	Visit	feature.

Visit	is	enabled	by	default,	but	is	an	optional	feature.	While	Visit	is	enabled,	the	patient	dashboard	will	show	a	tab	called	Visits
and	group	all	encounters	by	visit.	If	disabled,	the	patient	dashboard	will	show	the	Encounters	tab	and	list	encounters
chronologically	with	no	grouping.

A	visit	has	a	start	time	and	an	end	time.	The	start	date	and	time	is	automatically	set	when	a	visit	is	created.	The	end	date	and	time
is	left	blank	by	default.	It	is	set	manually	by	a	data	clerk.

The	Start	auto	close	visits	task	option	changes	this.	If	enabled,	auto-close	will	automatically	set	the	end	date	to	the	start	date,	and
the	end	time	to	23:59.

Auto-close	is	useful	for	visit	types	that	never	last	more	than	a	day,	such	as	outpatient	or	dental	visits,	or	where	the	exact	end	time
isn't	important.	Auto-close	is	not	recommended	for	visit	types	that	last	multiple	days,	such	as	hospitalization,	or	where	an	exact
duration	might	be	important,	such	as	an	emergency	room	visit.

Configuring	Visits

56



The	Encounter	Visit	Handler	controls	visit	creation	and	encounter	assignment	when	an	encounter	is	created.	The	default	option
will	automatically	link	the	encounter	to	a	matching	visit,	or	create	one	if	none	exists.	To	match,	a	visit	must	be	at	the	same
location,	and	the	encounter	dates	must	be	between	the	visit	start	and	end	times.	The	second	option	assigns	an	encounter	to	a
matching	Visit	if	one	exists,	but	does	not	create	a	new	one.	The	third	option	will	not	assign	encounters	to	anything.

The	Encounter	Visit	Handler	will	only	affect	new	encounters,	and	only	while	enabled.	It	does	not	affect	existing	visits.	If	you	turn
the	feature	off,	or	if	you	upgrade	from	an	earlier	version	of	OpenMRS,	it	will	not	retroactively	create	visits.

Configuring	Visits

57



The	Patient	Dashboard	In	Depth
The	Patient	Dashboard	is	the	place	to	view	or	edit	a	patient	record,	and	add	new	Visits	and	Encounters.

The	Patient	Dashboard	appearance	may	be	changed	by	modules.	This	chapter	will	show	the	dashboard	as	it	looks	without
modules.

Finding	or	Creating	a	Patient

To	begin,	we	must	find	or	create	a	patient.	This	is	done	from	the	Find/Create	Patient	link	on	the	top	menu.

Creating	patients	is	explained	in	the	Registering	Patients	chapter.

Header

The	header	bar	appears	at	the	top	of	the	dashboard.	It	contains	a	summary	of	some	patient	details:	name,	ID	number,	gender,	age
and	birthdate,	weight,	and	regimen.	There	will	be	a	link	to	any	visit	in	progress.	If	no	visits	are	in	progress,	one	can	be	begun	with
the	Start	Visit	button.

Overview	Tab

The	Patient	Dashboard	In	Depth

58



The	Overview	tab	on	the	Patient	Dashboard.	

The	Overview	tab	gives	access	to	several	patient	features.

If	a	patient	is	a	member	of	any	Program	(configured	in	Administration	>	Programs),	it	will	be	displayed	here.

The	Exit	Patient	from	Care	button	in	the	Patient	Actions	section	will	end	the	patient's	participation	in	any	program.

The	Relationships	tab	shows	relationships	between	the	Patient	and	other	patients,	providers,	or	users	in	the	OpenMRS
installation.	The	default	relationship	types	include	parent-child,	sibling,	doctor-patient,	and	aunt/uncle-niece/nephew.	You	can	add
relationship	types	in	Administration	>	Person	>	Manage	Relationship	Types.

Allergies	are	listed	in	the	Allergies	box.

Use	the	Problem	List	to	highlight	ongoing	health	problems.

Regimens	Tab

The	Patient	Dashboard	In	Depth

59



The	Regimens	tab	on	the	Patient	Dashboard.	

The	Regimens	tab	shows	a	patient's	current	and	completed	treatment	regimens.

Visits/Encounters	Tab

The	Visits/Encounters	tab	on	the	Patient	Dashboard.	

The	Visits	tab	shows	all	of	the	patient's	encounters,	grouped	into	visits.	If	the	Visits	feature	is	disabled,	the	tab	will	be	named
Encounters.

To	start	a	new	visit,	click	the	Add	Visit	link	in	the	Visits	tab,	or	the	Start	Visit	button	in	the	header.

The	Patient	Dashboard	In	Depth

60



To	view	a	visit,	click	the	link	with	the	visit's	name.	If	a	user	has	editing	privileges,	the	visit	will	open	in	edit	mode.

A	visit,	opened	in	edit	mode.	

In	edit	mode,	you	can	add	or	remove	encounters	from	the	visit.

To	view	an	encounter,	return	to	Patient	Dashboard	>	Visits	tab.	Click	on	the	View	icon	to	the	left	of	the	encounter.	If	a	user	has
editing	privileges,	the	encounter	will	open	in	edit	mode.

An	encounter	opened	in	edit	mode.	For	this	example,	we	used	the	FormEntry	module	to	create	and	display	the	encounter.	

The	Patient	Dashboard	In	Depth

61



Demographics	Tab

View	the	patient's	address	and	names	from	the	Demographics	tab.	The	Edit	Patient	links	will	let	you	edit	the	patient's
information,	including	identifiers,	birth	and	death	dates,	and	relationships.

The	Demographics	tab	on	the	Patient	Dashboard.	

Graphs	Tab

The	Graphs	tab	can	display	graphs	of	patient	information	such	as	CD4	counts.

Form	Entry	Tab

The	Form	Entry	tab	on	the	Patient	Dashboard.	

To	add	or	edit	encounters,	select	the	Form	tab.	The	last	three	encounters	are	listed	at	the	top.

To	add	a	new	encounter,	select	a	form	from	the	Enter	Form	box.	Form	setup	and	use	is	described	in	more	detail	in	the	chapters	on
Data	Entry,	HTML	Forms,	and	XForms.

The	Patient	Dashboard	In	Depth

62



The	Patient	Dashboard	In	Depth

63



Registering	Patients
In	order	to	be	able	to	fill	out	forms	for	a	patient,	you	must	first	create	a	Patient.	Often,	a	registration	clerk	or	data	entry	clerk	will
create	patients	in	the	system.	You	should	decide	which	model	works	best	for	your	clinic,	to	prevent	duplication	of	records.

You	can	create	patients	by	clicking	Find/Create	Patient	in	the	top	menu.

The	first	step	in	creating	a	patient	record	is	to	fill	out	the	short	Create	Patient	form.	After	entering	the	necessary	information,
click	on	Create	Person.	You	can	enter	more	details	on	the	next	screen.

Registering	Patients

64



Family	Name,	ID	Number,	and	Identifier	Type	are	required.	Identifier	type	is	discussed	in	detail	in	the	"Managing	Concepts
and	Metadata"	chapter.

Click	Save	to	go	to	the	Patient	Dashboard	screen,	where	you	can	see	all	the	details,	forms,	etc.	for	the	newly	created	patient.

Registering	Patients

65



Data	Entry

An	electronic	medical	records	system	has	many	advantages	compared	to	a	traditional	paper-based	system.	Data	is	collected	using
electronic	forms,	and	a	standard	template	means	that	each	user	sees	the	same	structure,	simplifying	the	representation	of	the
underlying	information	structure	and	complexity.	Electronic	forms	also	allow	for	basic	data	validation.

An	administrator	must	design	the	form	templates	that	data	clerks	will	use.	There	are	three	forms	modules	in	OpenMRS.	An
OpenMRS	installation	may	use	more	than	one	style,	but	for	simplicity,	it's	recommended	you	begin	with	one.	They	are	compared
below.

Form	Type Advantages Disadvantages

HTML
Forms

Easy	to	use
Ongoing	development	of	new	features
Supports	complex	logic	operations
Extendable
Allows	review	of	forms	after	submission

Requires	HTML	knowledge
Not	supported	on	mobile	devices

XForms
Open	source
Easy	to	use
Works	well	on	mobile	devices

Does	not	support	some	complex	logic
operations

InfoPath
Original	approach	to	data	entry	via	forms
Others	may	already	be	familiar	with	the
technology

Not	open	source
Runs	only	on	Windows
Requires	payment	of	license	fees
No	new	development	by	the	OpenMRS
team

Data	Entry

66



The	next	chapters	describe	HTML	Form	Entry	and	XForms	in	more	detail.

InfoPath	forms,	created	with	the	FormEntry	module	and	Microsoft	InfoPath,	are	not	recommended.	Microsoft	InfoPath	is
proprietary	software,	and	the	forms	are	difficult	to	troubleshoot.	InfoPath	forms	will	continue	to	work,	but	there	will	be	no	new
development.

Data	Entry

67



HTML	Forms
This	chapter	will	discuss	only	the	HTML	Form	entry	method.	This	is	the	simplest	and	most	straightforward	approach	to	data
entry.	It	is	supported	by	the	HTML	Form	Entry	module,	which	is	included	with	the	default	distribution	of	OpenMRS.

Basic	HTML	form	structure

Every	HTML	form	must	have	the	following	minimal	elements:

<htmlform>

				<p>Date	of	encounter:	<encounterDate		/>	</p>

				<p>Health	center:	<encounterLocation	/>	</p>

				<p>Clinician's	name:	<encounterProvider	role="Provider"	/>	</p>

...

				<p>Name	of	observation:	<obs	conceptId="x"	/>	</p>

				<p><submit	/></p>

</htmlform>

Form	header

It	is	easiest	to	leave	these	essential	elements	in	a	form	header	section	that	you	re-use	at	the	top	of	each	form.	The	mandatory
observation	element	is	included	below.

Case	study:	Amani	Clinic

The	clinicians	at	the	Amani	Clinic	needed	a	way	to	capture	patient	history	as	part	of	their	maternal	and	child	health	(MCH)
program.	They	had	been	in	contact	with	the	Millenium	Villages	Project	(MVP)	via	the	OpenMRS	implementers	mailing	list.	MVP
staff	shared	their	Antenatal	Visit	form.	The	implementation	team	decided	to	use	the	History	section	from	the	MVP	form	as	a	basis
for	their	MCH	history	form.

The	MVP	Antenatal	History	section	looked	like	this:

HTML	Forms

68



Step	1:	Identify	and	create	concepts

Before	you	create	a	form,	you	must	ensure	that	all	reference	concepts	are	present	in	the	concept	dictionary.	Because	the	MVP
team	already	had	a	concept	dictionary,	the	Amani	Clinic	were	able	to	import	the	concepts	they	needed.	If	you	don't	have	access	to
an	appropriate	concept	dictionary,	you	can	also	create	new	concepts	directly,	following	the	steps	outlined	in	the	chapter	Managing
Concepts	and	Metadata.

The	MVP	form	included	fourteen	different	Question	Concepts,	as	well	as	Answer	Concepts	for	[1],	[3],	[6],	[9],	[11],	[13],	and
[14].

Step	2:	Create	the	form

To	create	a	form,	click	on	the	Manage	HTML	Forms	link	on	the	Administration	page.

HTML	Forms

69



ClickNew	Form.

Enter	the	basic	form	information	and	click	Save.

Step	3:	Create	visual	form	structure	with	HTML

HTML	forms	allow	you	to	create	a	structure	that	closely	resembles	your	paper	forms,	although	it	may	not	be	precisely	the	same.

The	degree	to	which	your	form	resembles	the	paper	form	depends	on	your	HTML	layout	skills--all	HTML	tags	are	supported.
Table	layout	is	beyond	the	scope	of	this	guide,	but	there	are	many	resources	available	online.

This	is	the	basic	structure	of	the	example	HTML	form,	with	a	placeholder	label	inserted	for	each	observation:

HTML	Forms

70



Step	4:	Insert	observation	elements

Next,	insert	a	form	tag	for	each	observation	in	your	forms.	These	obs	tags	are	not	HTML	tags,	but	are	required	by	OpenMRS.	The
following	sections	provide	examples	of	each	concept	datatype	used	on	the	example	form.	The	HTML	Form	Entry	module
provides	a	wide	variety	of	other	tags.	Please	consult	the	HTML	Form	reference	on	the	wiki	for	full	documentation	along	with
other	examples.

https://wiki.openmrs.org/display/docs/HTML+Form+Entry+Module+HTML+Reference

Note:	The	Concept	Identifier	numbers	used	in	this	example	will	not	match	the	Concept	Identifiers	in	your	local	OpenMRS
instance.

Example	1:	Date	observation

To	insert	a	Date	Observation,	include	the	Question	Concept	ID	of	any	date-based	Concept.	The	formatting	label	behind	the	Date
Box	cannot	be	removed.

<table>

				<tr>

								<td>

												<b>Last	Menstrual	Period:</b>

								</td>

								<td>

												<obs	conceptId="1427"/>

								</td>

				</tr>

</table>

Example	2:	Boolean	observation

HTML	Forms

71

https://wiki.openmrs.org/display/docs/HTML+Form+Entry+Module+HTML+Reference


To	insert	a	Boolean	observation,	include	the	question	concept	ID	of	any	boolean	concept.	There	are	several	different	styles
available	for	Boolean	types.

...

<table>

				<tr>

								<td>

												<b>High-Risk	Sex:</b>

								</td>

								<td>

												<obs	conceptId="1355"	style="yes_no"/>

								</td>

				</tr>

</table>

....

Example	3:	Coded	observation	with	radio	buttons

This	obs	element	is	inserted	with	the	radio	button	style.	You	must	specify	each	answer	concept	ID	even	though	they	are	already
recorded	in	the	system	as	answers	for	the	question	concept.	If	you	want	to	use	a	name	other	than	the	concept	name	for	an	answer
concept,	you	must	include	the	answer	concept	label.

To	render	the	radio	buttons	vertically,	insert	<br	\/>	at	the	end	of	each	label	for	the	previous	button.

...

<table>

				<tr>

								<td>

												<b>Reason	For	Visit:</b>

								</td>

								<td>

												<obs	conceptId="1433"	style="radio"	answerConceptIds="1435,1434,5622"	answerLabels="Planning	Pregna

ncy&lt;br	\/	&gt;,	Currently	Pregnant&lt;br	\/	&gt;,	Other"/>

								</td>

				</tr>

</table>	

...

Example	4:	Coded	observation	with	multi-select	checkboxes

HTML	Forms

72



This	obs	element	is	inserted	with	the	checkbox	button	style.	You	must	specify	each	Answer	Concept	ID	even	though	they	are
already	recorded	in	the	system	as	answers	for	the	question	concept.	If	you	want	to	use	a	name	other	than	the	concept	name	for	an
answer	concept,	you	must	include	the	answer	concept	label.

Each	checkbox	selected	actually	represents	an	individual	observation;	the	question	concept	is	common	but	each	answer	concept	is
unique.

...

<table>

				<tr>

								<td>

												<b>Recent	Contraceptive	Use:</b>

												<br/>

												<obs	conceptId="1635"	answerConceptId="1107"	answerLabel="None"	style="checkbox"/>

												<br/>

												<obs	conceptId="1635"	answerConceptId="780"	answerLabel="Oral	Contraception"	style="checkbox"/>

												<br/>

												<obs	conceptId="1635"	answerConceptId="190"	answerLabel="Condoms"	style="checkbox"/>

												<br/>

												<obs	conceptId="1635"	answerConceptId="5277"	answerLabel="Natural	Planning	/	Rhythm"	style="checkbo

x"/>

												<br/>

												<obs	conceptId="1635"	answerConceptId="5278"	answerLabel="Diaphragm"	style="checkbox"/>

												<br/>

												<obs	conceptId="1635"	answerConceptId="1378"	answerLabel="Depo-Provera"	style="checkbox"/>

												<br/>

												<obs	conceptId="1635"	answerConceptId="1359"	answerLabel="Norplant"	style="checkbox"/>

												<br/>

												<obs	conceptId="1635"	answerConceptId="1388"	answerLabel="Surgery"	style="checkbox"/>

												<br/>

												<obs	conceptId="1635"	answerConceptId="5622"	answerLabel="Other"	style="checkbox"/>

												<br/>

								</td>

				</tr>

</table>

...

Complete	form

HTML	Forms

73



See	Appendix	B	for	Full	HTML	source.

Enter	Patient	Data	Using	an	HTML	Form

Click	on	Find/Create	Patient	from	anywhere	within	OpenMRS.

Begin	typing	the	patient's	ID	number	or	name,	then	select	the	patient	for	whom	you	are	entering	data.

Click	the	Form	Entry	tab.

HTML	Forms

74



Select	the	appropriate	form	as	shown	below,	then	fill	in	the	patient	data	and	click	the	Enter	Form	button	on	the	page	that	appears.

You	can	now	see	the	completed	form	under	the	Form	Entry	tab	of	the	patient's	chart.

HTML	Forms

75



XForms
This	chapter	will	explain	and	demonstrate	the	use	of	the	XForms	Module	for	patient	data	entry.

What	an	XForm	is

XForms	is	an	XML	format	for	specifying	a	data	processing	model	for	XML	data	and	user	interface(s)	for	the	XML	data,	such	as
web	forms.	XForms	was	designed	to	be	the	next	generation	of	HTML	/	XHTML	forms,	but	is	generic	enough	to	use	in	a
standalone	manner	or	with	presentation	languages	other	than	XHTML	to	describe	a	user	interface	and	a	set	of	common	data
manipulation	tasks.

What	this	module	does

Allows	data	entry	to	be	done	directly	from	any	JavaScript	enabled	browser.

Enables	you	to	replace	the	default	patient	registration	form	with	a	custom	one	without	any	programming.

Lets	you	enter	observations	during	patient	registration.

Supports	uploading	of	picture,	sound,	and	video	files	together	and	displays	and	plays	them.

Lets	you	design	XForms	using	a	browser-based	form	designer.

Serves	OpenMRS	forms	as	XForms	to	external	applications.

Serves	users	and	patient	sets,	including	medical	history,	to	external	applications.

Accepts	form	data	submitted	from	external	XForms	applications.

Supports	creation	of	patients	and	entry	of	observations	for	both	new	and	existing	patients	using	basic	text	SMS.

What	it	doesn't	do

Give	you	as	much	flexibility	as	the	HTML	Form	Entry	module	when	it	comes	to	the	form	layout	and	looks.

Some	features	present	in	the	HTML	Form	Entry	module	are	not	yet	implemented	(e.g.:	relationships).

Creating	an	XForm
In	the	Admin	page,	under	the	Forms	section	select	Manage	Forms.

XForms

76



Cohort	Builder
The	Cohort	Builder	is	a	tool	in	the	Reporting	Compatibility	module	(included	with	most	OpenMRS	installations)	that	lets	you
perform	ad-hoc	queries	for	patients	with	defined	characteristics,	and	combines	multiple	queries	into	more	complex	ones.

A	cohort	query	returns	a	list	of	patients	matching	the	specified	criteria.	Cohort	Builder	cannot	create	lists	of	data	elements	other
than	patients.	For	example,	you	can	use	the	cohort	builder	to	search	for	all	patients	with	any	weight	observation	>	70,	but	it	is	not
possible	to	create	a	list	of	all	observations	of	weight	>	70.

To	use	this	tool,	click	Cohort	Builder	at	the	top	of	any	page.

Cohort	definitions,	cohorts,	and	search	history
Each	Patient	Search	is	added	to	your	search	history.	This	history	is	preserved	until	you	choose	to	clear	it	or	the	web	application	is
restarted.	You	may	also	save	your	search	history	to	preserve	it	for	future	re-use.

You	may	save	any	search	(simple	or	combined)	as	a	Cohort	Definition	to	make	it	easier	to	re-run	that	same	search	in	the	future.
When	you	save	a	combined	search,	it	includes	copies	of	all	its	component	searches.

You	may	also	save	the	list	of	patients	resulting	from	a	query	as	a	Cohort.	The	list	of	members	in	a	saved	cohort	will	never	change.
On	the	other	hand,	running	a	saved	search	again	may	produce	new	results.

The	initial	screen	of	the	cohort	builder	contains	several	sections:

1.	 The	top	tabs	allow	you	to	run	different	kinds	of	queries.

2.	 Each	query	you	perform	goes	into	the	search	history.

3.	 The	Save,	Load,	and	Clear	buttons	help	keep	your	entire	search	organized.

4.	 After	running	a	query,	cohort	members	are	displayed	here.

5.	 Click	this	Save	button	to	save	this	cohort	for	future	re-use.

6.	 Click	these	Save	buttons	to	save	a	previous	query	as	a	cohort	definition	for	future	re-use.

7.	 Use	the	link	at	the	top	of	the	cohort	builder	to	load	saved	cohorts	and	cohort	definitions.

Cohort	Builder

77



Searching	by	observation

To	search	for	patients	who	have	observations	matching	certain	criteria,	choose	the	Concept/Observation	tab.	Start	typing	the
name	of	a	concept	that	you	want	to	search	for	[1],	and	choose	that	concept	from	the	search	results	[2].

If	you	choose	a	concept	whose	datatype	is	anything	other	than	N/A,	you	can	search	for	observations	whose	question	is	the	concept
you	selected	[3].	Depending	on	the	datatype,	you	can	limit	this	to	a	numeric	or	date	range,	or	to	specific	coded	answers.	You	can
also	choose	which	observations	you	are	looking	for	(first,	last,	min,	max,	any,	none)	or	combine	(average),	and	you	can	specify
date	ranges.

This	example	will	build	a	cohort	of	patients	whose	last	systolic	blood	pressure	measurement	was	above	130	mmHg:

Cohort	Builder

78



You	can	also	search	for	any	observations	that	have	your	chosen	concept	as	an	answer.	(You'd	typically	use	this	for	doing	a	highly
selective	search,	which	you'll	later	filter	down	to	something	more	specific.)

In	this	example	we	search	for	patients	who	have	any	observation	whose	answer	is	Hypertension,	which	might	include	both
confirmed	diagnoses	of	hypertension	as	well	as	consults	to	rule	out	Hypertension:

Searching	by	demographics

Select	the	Patient	Attributes	tab	to	search	based	on	simple	demographic	characteristics:	gender,	age,	birthdate,	and	vital	status.

Cohort	Builder

79



In	this	example,	we	search	for	living	male	patients	between	45	and	65	years	old:

Searching	by	encounters

Select	the	Encounters	tab	to	search	for	patients	based	on	encounters	they	have	had.	You	can	search	by	encounter	type	(control-
click	to	select	multiple	types),	location,	the	form	with	which	the	encounter	was	recorded,	date	ranges,	and	the	number	of	matching
encounters	to	look	for.

In	this	example	we	search	for	patients	who	have	had	at	least	3	encounters	whose	types	were	either	ADULTINITIAL	or
ADULTRETURN:

Searching	by	program	enrollments

Cohort	Builder

80



Select	the	Program	Enrollment	tab	to	search	for	patients	enrolled	in	a	particular	program,	or	patients	who	have	a	particular
status.

In	this	example,	we	search	for	patients	who	have	ever	been	in	the	Hypertension	Program:

Combining	searches
After	you	have	done	several	searches,	the	Composition	tab	allows	you	to	combine	them	using	Boolean	algebra.	You	can	use
AND,	OR,	NOT,	or	parentheses	to	build	complex	combinations	of	the	other	searches	in	your	history.	Refer	to	your	previous
searches	using	the	number	next	to	them	in	the	Search	History	section.

Here,	we	search	for	patients	who	match	a	combination	of	the	previous	example	queries:

Cohort	Builder

81



Reporting
This	chapter	describes	how	to	use	the	Reporting	module	to	produce	a	simple	report	on	several	indicators--the	type	you	might	use
for	monitoring	and	evaluating	a	program.

Although	this	chapter	will	cover	the	basics,	as	your	OpenMRS	implementation	grows,	you'll	want	to	take	advantage	of	the
Reporting	module's	additional	features	like:

Multiple	types	of	indicator-based	reports

Quick	ways	to	break	down	indicators	based	on	gender,	age	groups,	etc.

Several	kinds	of	patient	reports

The	ability	to	schedule	regular	reporting

Easy	formatting	options	for	printed	output	using	Excel	templates

An	API	that	Java	developers	can	extend	to	add	custom	reports,	indicators,	and	displays.

The	module's	full	functionality	is	beyond	the	scope	of	this	book.	You	can	find	further	documentation	on	the	OpenMRS	Wiki:

https://wiki.openmrs.org/display/docs/Reporting+Module

This	chapter	follows	after	the	ones	on	Data	Entry,	because	you	cannot	actually	build	reports	without	some	data	to	run	them	on.
But	while	planning	the	project	you	should	follow	the	best	practice	of	determining	whatoutputs	you	want,	and	working	backwards
from	there	to	determine	the	minimal	set	of	data	that	you	need	to	collect	to	produce	those	outputs.

Background	and	terminology

The	reporting	module	is	built	around	the	idea	of	Definitions	that	are	evaluated	to	produce	output.

Reports	and	data	sets

In	general	a	Report	Definition	can	have	multiple	Data	Set	Definitions.	When	run,	this	will	produce	a	report	with	multiple	data
sets,	which	is	rendered	to	a	format	chosen	by	the	user.

Cohorts

Almost	all	reports	produced	with	OpenMRS	refer	to	groups	of	patients.	A	report	may	be	run	on	different	patient	groups,	or	require
identifying	or	counting	sub-groups	of	patients.	The	module	lets	you	define	cohort	queries	(as	discussed	in	the	chapter	"Cohort
Builder").	When	the	report	is	run,	these	queries	will	be	evaluated	to	produce	actual	cohorts	of	patients.

Indicators

In	this	chapter,	we	look	at	a	report	that	is	based	on	Indicators,	and	specifically	indicators	that	look	at	the	count	of	patients	in	a
cohort	in	a	period	of	time.

Parameters	and	mapping

Unlike	in	the	OpenMRS	Cohort	Builder,	reports	and	their	underlying	queries	are	intended	to	be	created	once,	and	reused.	To
support	this	idea,	reports	and	queries	usually	take	parameters.	For	example,	a	report	intended	to	be	run	monthly	would	have	Start
Date	and	End	Date	parameters,	and	the	user	would	be	asked	for	these	when	they	generate	the	report.

Reporting

82

https://wiki.openmrs.org/display/docs/Reporting+Moduleg


The	underlying	queries	in	the	report	also	typically	take	parameters.	If	the	report	is	going	to	display	the	number	of	patients	enrolled
in	the	Child	Nutrition	Study	at	the	end	of	a	given	month,	it	would	need	to	have	an	underlying	Cohort	Query	for	"patients	enrolled
in	Child	Nutrition	Study	on	a	date."	p;[/0"	+{}hat	date	would	be	an	Effective	Date	parameter.

When	the	user	runs	the	report,	they	are	asked	for	a	Start	Date	and	an	End	Date,	but	they	are	not	asked	to	specify	an	Effective
Date.	When	designing	the	report,	you	will	need	to	define	how	parameters	in	the	underlying	queries	obtain	their	values,	based	on
the	values	provided	by	the	user	when	running	the	report.	This	process	is	called	mapping.

The	idea	of	mapping	parameters	is	complicated.	The	following	resources	include	more	information	about	why	it	is	necessary,	and
how	to	do	it:

http://om.rs/bookmapping

http://om.rs/bookmapvid

Amani	Clinic's	weekly	report

Before	adopting	OpenMRS,	Amani	Clinic	used	to	spend	significant	time	at	the	end	of	every	month	tabulating	paper	registers	and
patient	charts	to	produce	a	monthly	report	for	the	Ministry	of	Health.	When	planning	their	OpenMRS	implementation,	they
decided	that	to	improve	their	program,	they	needed	more	immediate	feedback.	The	clinic	and	Ministry	of	Health	met	and	decided
on	five	indicators	on	which	they	wanted	a	report	every	week.	They	modified	their	paper	data	collection	forms	to	make	sure	that
they	were	capturing	the	right	data	to	produce	those	indicators,	as	well	as	the	periodic	Ministry	of	Health	reports.

We'll	focus	on	two	of	the	indicators	they	calculated:

1.	 Number	of	female	patients	seen	during	the	week,	and

2.	 The	percentage	of	those	who	were	>16	years	old,	not	pregnant,	and	using	appropriate	family	planning

Defining	the	Underlying	Cohort	Queries

Calculating	the	first	of	those	indicators	was	very	straightforward:	they	defined	this	to	be	any	female	patient	having	an	encounter
between	the	start	and	end	of	the	week.

The	second	indicator	was	more	complicated:	they	had	to	break	down	both	the	numerator	and	the	denominator	into	multiple	cohort
queries.	For	the	denominator	they	needed:

Not	pregnant	("no	obs	for	Estimated	Date	of	Confinement	with	a	value	in	the	future")

Female

Age	>	16	at	the	end	of	the	week

Had	an	encounter	during	the	week	(same	as	the	query	for	the	first	indicator)

The	numerator	required	just	one	more	cohort	query,	for	patients	who	self-reported	use	of	contraceptive	methods	other	than
"Natural	Planning	/	Rhythm"	during	the	week.

Reporting

83

http://om.rs/bookmapping
http://om.rs/bookmapvid


Building	the	report	in	the	user	interface

Having	determined	how	to	calculate	their	indicators,	they	proceeded	to	build	them	in	the	Reporting	module's	user	interface.	First,
they	built	the	low-level	queries	[1].	They	then	composed	the	two	indicator	definitions	[2]	from	those	cohort	queries.	Finally,	they
created	a	report	definition	[3]	that	included	the	two	indicators.

Building	cohort	queries
The	Cohort	Query	management	page	shows	you	the	different	types	of	queries	available.	Clicking	on	any	of	the[+]links	lets	you
create	a	new	query	of	that	type.

The	simplest	query	built	by	Amani	Clinic	included	only	female	patients:

The	rest	of	the	queries	needed	to	include	parameters.	For	example,	the	query	to	find	patients	with	any	encounter	between	two
given	dates,	the	"on	or	after"	and	"on	or	before"	fields	were	set	as	a	Parameter	[1]	and	user-friendly	names	"Start	Date"	and	"End
Date"	were	provided.

Reporting

84



Some	of	the	queries	built	in	this	example	included	parameters	that	were	not	directly	equivalent	to	the	Start	Date	and	End	Date	of
the	report.	The	"not	pregnant"	query	was	a	Date	Observation	Query	that	included	a	single	parameter,	which	they	later	mapped	to
the	End	Date	of	the	report.

Reporting

85



Combining	cohort	queries

After	Amani	Clinic	staff	created	the	underlying	queries	that	their	report	required,	they	built	several	Composition	Cohort	Queries
to	tie	them	together.	The	most	complicated	query	calculated	the	denominator	of	the	second	indicator,	"non-pregnant	women,	age	>
16,	seen	during	the	week."

This	is	their	composition	query,	which	includes	the	two	parameters	Start	Date	and	End	Date.	It	includes	four	underlying	queries,
with	values	in	those	queries	mapped	to	these	two	parameters.	Finally,	the	queries	are	combined	with	AND	to	run	them	all	together.

Here,	we	see	the	seven	cohort	queries	they	built:

Indicators

Having	built	cohort	queries	to	do	the	underlying	calculations,	they	used	these	to	build	the	two	indicators.	The	Indicators	page	is
accessed	from	the	Manage	Report	Definitions	section	of	the	Administration	page.

Reporting

86



Since	indicators	are	generally	calculated	over	a	time	period,	at	a	particular	location,	the	indicators	they	created	contain	the	default
Start	Date,	End	Date,	and	Location	parameters.	(Since	the	Amani	Clinic	was	only	managing	a	single	site	in	OpenMRS,	they
ignored	the	Location	parameter.)

Count	indicators

The	simplest	type	of	indicator	is	a	Count	indicator,	which	counts	the	number	of	patients	who	match	a	cohort	query.

They	used	a	Count	indicator	to	build	their	first	indicator,	shown	below.	The	underlying	cohort	query	is	a	composition	query
including	"Females"	and	"Any	Encounter	Between	Dates."

Fraction	indicators

The	most	useful	type	of	indicator	for	monitoring	program	progress	is	the	Fraction	indicator,	which	takes	two	cohort	definitions,
representing	a	numerator	and	a	denominator,	and	displays	this	as	a	fraction.	(It	ensures	that	the	numerator	patients	are	a	subset	of
the	denominator.)

Amani	Clinic	built	their	second	indicator	as	a	fraction	indicator.	The	underlying	cohort	query	for	the	numerator	was	a	simple
Coded	Observation	Query,	while	the	denominator	was	the	Composition	Query	described	above.

Period	indicator	report

Having	created	their	indicators,	they	built	a	report	that	combined	them.	They	used	a	Period	Indicator	Report,	which	is	a	simple
way	to	show	the	indicators	you	have	already	defined.

Reporting

87



Running	the	report

To	run	this	report,	the	Amani	Clinic	data	manager	clicks	the	Reporting	link	on	the	top	of	the	screen	and	selects	the	Program
Monitoring	Report.	They	must	enter	the	start	and	end	date	of	the	week	for	which	to	generate	the	report.

The	output	of	the	report	includes	clickable	links	to	the	lists	of	patients	matching	each	indicator.

Reporting

88



Patient	Alerts	and	Flags
It's	important	to	actively	use	your	data	to	provide	feedback	to	users	of	the	system,	both	for	clinical	purposes	and	data	quality
purposes.	One	way	to	do	this	is	with	the	Patient	Flags	module,	which	can	display	Flags	on	a	patient	dashboard	when	certain
criteria	are	met,	and	to	find	all	patients	that	match	a	set	of	criteria.	We	will	briefly	describe	this	module	here,	but	you	can	find
further	documentation	at	the	following	location:

https://wiki.openmrs.org/display/docs/Patient+Flags+Module

Using	this	module	requires	significant	technical	knowledge.	This	chapter	assumes	that	you	are	familiar	with	CSS,	SQL,
Groovy/Java,	and	the	OpenMRS	API.

First,	you	need	to	install	Patient	Flags	module	from	the	OpenMRS	module	repository,	and	then	go	to	its	section	on	the
Administration	page.	First,	define	categories	of	alerts	[1].	Then,	you	can	define	logic	and	messages	for	these	alerts	[2].

Categorizing	flags	by	priorities
From	the	Manage	Priorities	link,	you	can	define	different	categories	of	alerts,	each	of	which	can	be	decorated	with	custom	CSS.

In	this	example	we	define	two	different	categories	of	alerts,	the	more	critical	of	which	will	be	highlighted	in	orange,	and	the	other
in	gray.	Note	that	you	need	to	include	thestyle="..."	in	your	style	property.

Defining	flags

To	set	up	a	flag,	you	need	to	define	a	calculation	that	returns	the	cohort	of	patients	for	whom	the	flag	should	be	shown.	There	are
multiple	ways	to	do	this,	each	requiring	a	different	type	of	technical	knowlege.

All	flags,	regardless	of	how	they	are	calculated,	let	you	specify	text	and	a	Priority.	The	text	is	displayed	on	a	patient	dashboard
for	patients	to	whom	the	flag	applies,	and	the	Priority	controls	the	formatting	of	the	flag	if	displayed.

Finally,	you	can	decide	whether	flags	are	Real-Time,	which	means	that	the	flags	to	be	displayed	are	calculated	whenever	you
view	a	patient	dashboard.	If	you	don't	make	a	flag	real-time,	you	can	still	execute	the	flag	calculations	on	demand	as	a	batch.

SQL	flags

Patient	Alerts	and	Flags

89

https://wiki.openmrs.org/display/docs/Patient+Flags+Module


The	calculation	behind	this	type	of	flag	is	a	SQL	statement	that	will	be	executed	against	the	database,	and	must	include	a	select
(something).patient_id	...	statement.	The	results	of	this	query	will	be	intersected	with	all	non-voided	patients	to	produce	the
Cohort	for	the	flag.

Many	system	administrators	know	how	to	write	SQL	queries,	and	over	time	they	become	familiar	with	the	OpenMRS	data	model,
making	this	type	of	flag	very	accessible.	At	the	same	time,	writing	this	type	of	flag	can	be	error-prone.	There	is	nothing	to	prevent
you	from	omitting	a	clause,	such	as	to	ensure	you	are	only	looking	at	non-voided	data.

In	this	example	we	are	searching	for	all	patients	who	have	carried	at	least	4	pregnancies.

Since	SQL	flags	must	include	.patient_id	in	their	select	clause,	we	have	to	join	the	obs	table	against	the	patient	table,	even
though	we	aren't	using	that	table.

Groovy	flags

The	most	powerful	type	of	flag	allows	you	to	write	Groovy	or	Java	code,	which	can	call	OpenMRS's	Java	API	and	perform
complex	calculations	on	patient	data.	The	advantage	of	writing	flags	in	Groovy	is	that	the	OpenMRS	API	takes	care	of	details	like
ensuring	you	are	only	getting	non-voided	data.	The	limitation	is	that	most	managers	of	OpenMRS	systems	do	not	know	how	to
write	Groovy/Java	code.

A	Groovy	flag	returns	a	cohort	of	all	patients	that	match	the	calculation.	In	this	example	we	find	all	patients	who	are	expected	to
give	birth	in	the	next	3	months,	but	who	have_not_had	an	encounter	in	the	last	3	months.

Patient	Alerts	and	Flags

90



Patient	Alerts	and	Flags

91



User	Management	and	Access	Control
Roles	and	Privileges	are	controlled	through	the	Administration	page,	under	the	Manage	Users	section.

OpenMRS	uses	privileges	and	roles	to	control	access	to	data	within	the	system.	Privileges	define	what	can	or	cannot	be	done	in
the	system	(e.g.,	Edit	Patients	or	Add	Users),	while	roles	are	used	to	group	privileges	into	more	manageable	groupings.	To	make
the	system	easier	to	manage,	roles	can	contain	other	roles	as	well	as	privileges.	Roles	inherit	all	the	privileges	of	their	parent	roles.

We	will	use	this	example:	you	are	working	with	several	privileges	related	to	patient	data—e.g.,	View	Patients,	Edit	Patients,	and
Add	Patients.	TheView	Patientsprivilege	lets	users	look	at	patients	in	the	system,	the	Edit	Patients	privilege	lets	users	edit
information	about	existing	patients,	and	the	Add	Patients	privilege	allows	users	to	create	a	completely	new	patient	record	within
the	system.

Now	imagine	that	you	need	to	assign	the	proper	rules	to	three	people:	Mary	the	Medical	Student,	Bob	the	Data	Assistant,	and
Erica	the	Data	Manager.	You	want	medical	students	to	be	able	to	view	patients,	but	not	edit	or	add	them.	Data	assistants	should	be
able	to	not	only	view,	but	also	edit	patient	data.	And	you	want	your	data	managers	to	be	able	to	create	new	patients	within	your
system.

Designing	role	and	privilege	schemes

In	order	to	give	these	privileges	to	the	relevant	users,	you	must	define	a	role	for	each	of	these	types	of	user.

Role Privilege(s)

Medical	Student View	Patients

Data	Assistant
View	Patients

Edit	Patients

Data	Manager

View	Patients

Edit	Patients

Add	Patients

Now,	by	defining	the	main	roles	for	users	of	your	system	and	assigning	users	to	those	roles,	you	have	a	much	easier	system	to
manage	and	users	will	automatically	inherit	all	privileges	given	to	their	role(s).	Of	course,	some	users	will	have	multiple	roles.
Now,	let's	take	this	process	one	step	further.	While	it	may	not	seem	necessary	in	this	simple	example,	as	your	system	grows,	you
will	likely	end	up	with	a	large	number	of	different	roles.	Very	often,	certain	roles	can	be	defined	as	a	combination	of	other	roles.
In	our	example,	a	Data	Manager	oversees	the	Data	Assistants	and	therefore	should	have	all	of	their	privileges	plus	some
additional	privileges.	So,	let's	redesign	our	roles	slightly	to	show	how	this	might	work.

Role Inherit	Privileges	from	Role(s) Additional	Privilege(s)

Medical	Student View	Patient

Data	Assistant
View	Patient

Edit	Patient

Data	Manager Data	Assistant Add	Patient

User	Management	and	Access	Control

92



You	can	see	that	the	Data	Manager	role	can	be	more	clearly	defined	as	a	Data	Assistant	with	the	extra	ability	to	add	patients	to
the	system.	In	addition,	if	you	should	change	or	enhance	the	privileges	of	the	Data	Assistant	role	at	any	time	in	the	future,	the
Data	Manager	will	automatically	adapt	to	those	changes	—	for	example,	if	you	decided	a	month	later	to	allow	any	Data
Assistant	to	Edit	Encounters	(by	adding	the	Edit	Encounters	privilege	to	the	Data	Assistant	role),	the	Data	Manager	role
would	automatically	gain	the	ability	to	edit	encounters	as	well.

In	a	common	deployment	scenario,	you	will	have	several	roles	that	use	the	same	privileges	with	only	a	few	differences.	It	is
simpler	to	manage	these	privileges	by	defining	a	new	role	from	which	the	others	can	all	inherit.	For	example,	you	may	have	roles
like	Clinician,	Data	Assistant,	and	Caregiver	that	all	have	the	same	rules	about	viewing	patient	data.	You	might	benefit	from
creating	a	new	Patient	Data	Viewer	role,	assigning	it	to	each	of	those	other	roles,	and	then	managing	the	privileges	in	one	place
(under	that	new	role).	When	there	is	a	policy	change	about	viewing	patient	data,	or	a	new	module	is	added	that	adds	new	functions
for	viewing	data,	you	would	update	the	Patient	Data	Viewer	role.	All	the	inheriting	roles	would	automatically	use	the	new
settings.

Built-in	roles

There	are	some	special	roles	that	are	predefined	within	OpenMRS	and	cannot	be	deleted:	Anonymous,	Authenticated,	and
System	Developer.	Any	privileges	granted	to	the	Anonymous	role	will	be	available	to	people	without	logging	into	the	system.
Generally,	Anonymous	privileges	should	be	kept	very	restricted,	since	patient	information	might	otherwise	be	compromised.
Privileges	granted	to	the	Authenticated	role	are	granted	to	anyone	that	logs	into	your	system,	no	matter	what	other	role(s)	they
might	be	assigned.	Granting	privileges	to	the	Authenticated	role	is	an	easy	way	to	grant	privileges	to	all	users	of	the	system.	The
System	Developer	role	is	automatically	granted	full	access	to	the	system	and	should	only	be	granted	to	system	administrators.

Super	users	(system	administrators)	are	automatically	granted	all	privileges	in	the	system;	therefore,	you	must	be	very	careful	to
protect	your	system	administrator	password.

Some	privileges	are	built	into	the	system	and	cannot	be	deleted.	Other	privileges	may	be	added	by	modules.	It	is	unlikely	that	you
will	be	adding	new	privileges	yourself,	since	privileges	are	only	useful	when	they	are	understood	and	used	by	the	system.	On	the
other	hand,	you	will	definitely	be	creating	new	roles	to	fit	your	needs	and	will	be	managing	privileges	within	those	roles.

Creating	roles

You	create	roles	through	Administration	>	Manage	Roles.

1.	 Allows	to	add	a	new	role

User	Management	and	Access	Control

93



2.	 Lists	all	roles	present	in	the	system

3.	 Click	a	role	to	edit	it.

If	you	then	follow	the	Add	Role	link,	you	will	see	a	form	for	adding	a	new	role.

1.	 Enter	Role	Name

2.	 Choose	Roles	Privileges	of	which	you	want	to	inherit

3.	 Choose	Privileges	which	you	want	this	Role	to	have

Creating	users

To	create	these	users,	we'll	go	through	Administration	>	Manage	Users.	This	page	also	lets	you	find	and	edit	existing	users.

User	Management	and	Access	Control

94



1.	 Create	a	new	User

2.	 Search	Users	by	Name	or	Roles

3.	 Search	results

4.	 Edit	a	single	User

Users	in	OpenMRS	need	to	be	associated	with	Persons.	You	either	need	to	create	a	new	Person,	or	attach	the	user	account	to	an
existing	one.

In	both	cases	you	will	be	taken	to	the	same	Add/Edit	User	screen.	(If	you	selected	an	existing	person,	the	fields	in	the
Demographic	Info	section	will	be	filled	out	for	you.)

User	Management	and	Access	Control

95



Managing	Providers

For	every	Encounter	you	must	enter	one	or	more	Providers,	the	person	who	provided	the	care	or	services.	Forms	usually	include
a	dropdown	box	to	select	a	provider.

The	system	administrator	must	explicitly	identify	Providers.	This	is	done	through	Administration	>	Providers	>	Manage
Providers.

There	are	two	kinds	of	providers.	In	OpenMRS	1.8	and	earlier,	a	provider	had	to	be	associated	with	a	user	or,	less	often,	a	patient.
The	administrator	had	to	create	a	user,	and	then	search	for	them	with	the	Person	dropdown	box.	This	is	most	useful	when	a
provider	has	a	user	login.

At	many	OpenMRS	sites,	only	a	few	users	log	into	the	system.	Often,	treatment	notes	are	entered	by	data	clerks	after	an
encounter,	and	clinicians	never	log	in.	Perhaps	there	are	hundreds	of	providers	who	volunteer	at	the	clinic	only	briefly.	From
OpenMRS	1.9	on,	these	providers	can	be	entered	as	a	name,	and	a	user	login	is	not	required.

For	system	security,	patient	privacy,	and	ease	of	maintenance,	it's	best	to	enter	providers	only	as	a	Provider	Name	when	possible.
You	should	create	a	user	if	the	provider	needs	to	log	in	or	be	given	special	permissions	through	a	role.	You	can	assign	a	user	to	a
provider	at	a	later	time	if	it	becomes	necessary.

To	create	a	Provider,	go	to	Admin	>	Manage	Providers	and	click	Add	Provider.

User	Management	and	Access	Control

96



The	identifier	is	a	unique	word	or	number	that	you	provide.	It's	recommended	that	you	create	identifiers	in	a	way	that's	simple	and
easy,	such	as	using	the	provider's	last	name	and	first	name.

Next,	decide	if	this	provider	will	be	associated	with	a	Person,	or	only	be	entered	as	a	provider	name.	If	you	choose	the	Person
style,	you	must	have	already	created	a	User	for	them.	Begin	typing	their	name	in	the	Person	field,	and	select	them	from	the	auto-
complete	list	of	matching	users.	For	a	Provider	who	is	simply	a	Provider	Name,	enter	their	name	in	the	Provider	Name	field.

Click	Save	to	save	the	provider.

User	Management	and	Access	Control

97



Maintenance
OpenMRS	server	room	in	Webuye,	Kenya.	

Once	you	have	installed	and	configured	OpenMRS	and	it	is	being	used	to	support	day-to-day	clinical	operations,	there	is	still
work	to	be	done.	To	ensure	the	system	runs	smoothly	and	error-free,	use	the	following	tips	as	a	starting	point	to	create	a
maintenance	plan	for	your	OpenMRS	installation.	We	recommend	documenting	this	plan	and	reviewing	it	regularly.

Server	management

Although	outside	the	scope	of	this	book,	it	is	important	to	keep	both	your	OpenMRS	server(s)	and	client	systems	updated	with	the
latest	security	patches.	In	Windows,	you	should	use	the	Windows	Update	tool	to	review	and	install	critical	system	updates.	If	you
use	Linux,	use	either	apt-get	upgrade	or	yum	update,	depending	on	what	distribution	of	Linux	you	use.

Before	upgrading	MySQL,	Java,	or	Apache	Tomcat	(and	of	course,	OpenMRS)	you	should	check	with	the	OpenMRS	community
to	see	how	those	upgrades	might	effect	how	OpenMRS	runs	on	your	server.	See	the	"Getting	Help"	section	for	more	information.

You	should	also	periodically	check	to	ensure	your	server	has	plenty	of	free	disk	space.	Additionally,	if	you	are	running	a	Windows
server,	ensure	your	system	has	anti-virus	software	installed	and	it	is	up-to-date.

Backups

You	should	ensure	your	system	has	a	backup	strategy.	Much	has	been	written	on	this	subject	and	general	knowledge	about
backups	is	beyond	the	scope	of	this	book.	However,	there	are	some	specific	items	to	consider	when	backing	up	your	OpenMRS
server.

Maintenance

98



Most	importantly,	you	need	to	create	a	backup	strategy	for	your	MySQL	database.	Perhaps	the	simplest	way	to	do	this	is	by	using
the	mysqldump	utility	that	ships	with	the	database.	Ideally,	you	will	want	to	shut	down	OpenMRS	before	backing	up,	and	restart
it	once	the	backup	has	completed.	If	you	are	not	able	to	do	so,	or	wish	to	have	the	system	remain	in	a	"read-only"	mode,	you	may
want	to	use	the	options	of	mysqldump	to	lock	tables.	Consult	the	MySQL	documentation	for	details.

You	should	also	ensure	you	are	backing	up	the	.OpenMRS	directory.	This	directory,	which	stores	modules	and	configuration	files,
is	stored	in	the	home	directory	of	the	user	that	runs	the	Tomcat	server	on	Windows	or	Linux.

Performance	tuning

Over	the	past	several	years,	implementers	of	OpenMRS	around	the	world	have	compiled	information	about	improving	the
performance	of	their	systems.	There	are	several	components	of	the	system	that	may	need	to	be	tuned	to	ensure	optimal
performance.	Please	use	the	information	in	the	following	sections	as	a	guide	and	a	starting	point	--	you	will	need	to	explore	what
settings	work	best	for	your	system.

OpenMRS	settings

Note:From	version	1.9	and	above,	"global	properties"	will	be	referred	to	as	"settings"	in	the	guide.

You	may	need	to	adjust	some	settings	in	OpenMRS.	To	do	this,	use	the	Maintenance	>	Advanced	Settings	page	under	the
OpenMRS	Administration	section,	find	the	desired	setting	and	clear	or	change	its	value	as	described	in	the	following	tips,	then
click	the	Save	button	at	the	bottom	of	the	page.

Clear	out	the	patient.identifierRegex	setting	to	disable	regular	expression	identifier	searches.

Clear	out	the	patient.identifierPrefix	and	patient.identifierSuffix	settings	to	disable	"like"	identifier	searches.

Make	sure	that	the	dashboard.regimen.displayDrugSetIds	setting	has	concept	ID	numbers	and	not	names.	In	other	words,
use	"1085,1159"	instead	of	"ANTIRETROVIRAL	DRUGS,TUBERCULOSIS	TREATMENT	DRUGS".

Set	the	searchWidget.batchSize,	searchWidget.runInSerialMode	and	searchWidget.searchDelayInterval	settings	to	tune
your	searches	for	better	performance	and	suit	your	implementation's	environment.	You	may	wish	to	consider	the	speed	of
your	network	connection,	typing	skills	and	average	number	of	simultaneous	users	on	a	typical	work	day.	You	might	also
consider	reducing	the	value	of	the	settings	person.searchMaxResults	and	searchWidget.batchSize	to	reduce	the	load	on	the
search	widgets	and	server	for	better	performance.

Apache	Tomcat

Tomcat	has	several	settings	that	may	be	adjusted	to	optimize	its	use	of	memory:

Experience	has	shown	it	is	best	to	install	Tomcat	from	the	download	section	at	http://tomcat.apache.org/	rather	than	any	other
source.	If	using	Ubuntu	Linux,	we	do	not	recommend	using	the	apt-get	installer.

Increase	the	amount	of	memory	allocated	for	Tomcat.	Depending	on	how	you	start	or	run	Tomcat,	use	one	of	the	following
methods:

If	running	Tomcat	from	the	command	line,	add	the	following	parameters:

-Xmx512m	-Xms512m	-XX:PermSize=256m	-XX:MaxPermSize=256m	-XX:NewSize=128m

Maintenance

99

http://tomcat.apache.org/


If	running	Tomcat	as	a	Windows	service,	launch	the	Tomcat	Monitor	application.	Go	to	Configure	>	Java	>	Java
Options	and	add	the	following	to	the	listed	settings:

-Xmx512m	-Xms512m	-XX:PermSize=256m	-XX:MaxPermSize=256m	-XX:NewSize=128m

If	running	Tomcat	as	a	Linux	service,	edit	the	/etc/init.d/tomcat	(or	equivalent)	script	and	modify	the	line	for
CATALINA_OPTS	to	read	as	follows:

CATALINA_OPTS="-Djava.library.path=/opt/tomcat/lib/.libs		-Xmx512m	-Xms512m	-XX:PermSize=256m	-XX:MaxP

ermSize=256m		-XX:NewSize=128m"

Adjust	Tomcat	to	prevent	potential	memory	leaks.	Tomcat	has	a	default	setting	that	often	causes	memory	leaks.	To	turn	it	off,
open	the	configuration	file.

<TOMCAT_HOME>/conf/web.xml

In	JSP	servlet	definition	add	the	following	element:

<init-param>

<param-name>enablePooling</param-name>

<param-value>false</param-value>

</init-param>

Experiment	with	better	garbage	collection	in	Tomcat	to	prevent	PermGen	out	of	memory	errors.	To	use	a	newer	version	of
Tomcat	garbage	collection,	you	need	to	add	the	following	to	CATALINA_OPTS,	as	was	shown	above	in	the	previous	step.

MySQL

Optimizing	MySQL	database	settings	will	help	OpenMRS	to	run	more	efficiently,	especially	as	your	installation	grows	in	the	size
of	data	you	are	storing.

Increase	theinnodb_buffer_pool_size.	It	is	the	size	in	bytes	of	the	memory	buffer	InnoDB	uses	to	cache	data	and	indexes	of	its
tables.	The	larger	you	set	this	value,	the	less	disk	I/O	is	needed	to	access	data	in	tables.	On	a	dedicated	database	server,	you	may
set	this	to	up	to	80%	of	the	machine	physical	memory	size.	However,	do	not	set	it	too	large	because	competition	for	physical
memory	might	cause	paging	in	the	operating	system.	Modify	the	following	in	MySQL'smy.inifile,	or	add	it	if	it	is	not	present.

max_allowed_packet=64M

Increase	themax_allowed_packet	size.	When	MySQL	attempts	to	work	with	a	packet	of	data	larger	than	specified,	it	causes
apacket	too	largeerror	and	closes	the	connection,	causing	OpenMRS	to	stop	working.	Increasing	this	value	allows	MySQL	to
handle	larger	sets	of	data.	Modify	the	following	in	MySQL'smy.inifile,	or	add	it	if	it	is	not	present.

innodb_buffer_pool_size=3G

You	may	also	consider	running	a	MySQL	performance-tuning	script	and	making	adjustments	to	your	MySQL	configuration	file
based	on	its	suggestions.	One	such	script	is	available	here:

https://wiki.openmrs.org/display/docs/Performance+Tuning

Replication	options

Maintenance

100

https://wiki.openmrs.org/display/docs/Performance+Tuning


Replication	of	your	OpenMRS	installation	across	multiple	servers	or	multiple	sites	is	an	advanced	topic	that	is	outside	the	scope
of	this	book.	However,	you	should	be	aware	that	several	options	exist	if	you	require	access	to	your	OpenMRS	data	from	alternate
locations.

MySQL	replication

The	MySQL	database	offers	methods	for	replicating	your	database	across	multiple	servers,	meaning	it	is	possible	to	have	multiple
synchronized	copies	of	your	OpenMRS	data.	Please	consult	the	MySQL	documentation	for	details.	If	you	point	an	identically-
configured	OpenMRS	server	at	this	replicated	database,	you	will	have	a	mirrored	instance	of	OpenMRS.	It	is	important	to	ensure
that	if	you	make	changes	to	the	primary	system,	those	same	changes	take	place	on	all	servers.

Sync	module

Another	option	is	available	for	OpenMRS	installations	with	multiple	sites.	The	community-developed	Sync	module	is	available
from	the	OpenMRS	module	repository,	and	allows	data	to	be	synchronized	across	a	network	(or	external	data	storage)	using	tools
within	OpenMRS	itself.	Please	search	the	OpenMRS	Wiki	for	more	information	about	the	Sync	module.

Upgrading	OpenMRS

The	OpenMRS	implementer	and	developer	communities	provide	application	and	customization	support	via	mailing	lists,	IRC,	and
other	means.	See	"Getting	Help	from	the	OpenMRS	Community"	for	more	information.

When	the	development	team	release	a	new	upgrade	for	OpenMRS,	they	will	provide	either	a	new	version	of	the	OpenMRS
Standalone	installer	or	the	OpenMRS	Enterprise	installer	file	to	run	on	your	server.	If	using	the	Standalone	version,	follow	the
upgrade	instructions	included	with	the	application.	If	using	the	Enterprise	version,	you	should	be	able	to	undeploy	the	OpenMRS
webapp	in	Apache	Tomcat,	and	deploy	the	new	version.

Be	sure	to	test	any	upgrades	on	a	server	other	than	the	primary	server	you	use	for	normal	clinical	support.	Always	be	sure	to	back
up	your	system	before	upgrading.

Updating	modules
Supported	community-developed	OpenMRS	modules	are	regularly	updated,	and	those	new	versions	are	published	in	the
OpenMRS	module	repository.	You	should	check	for	upgraded	modules	regularly.	Go	to	http://modules.openmrs.org/	or	view	the
"Manage	Modules"	page	from	the	OpenMRS	Administration	page.	From	there,	you	can	upgrade	a	module	with	updates
automatically	by	clicking	Install	Update,	or	you	may	manually	upload	the	new	version	by	following	the	instructions	on	the	page.

Amani's	maintenance	plan

Maintenance

101

http://modules.openmrs.org/


As	part	of	his	responsibilities	as	ICT	infrastructure	manager	for	the	clinic,	Daniel	created	a	written	maintenance	plan.	In	this
document,	he	has	included	daily,	weekly,	and	monthly	tasks.	The	only	daily	task	is	an	automated	one	--	Daniel	created	a	script	on
his	Ubuntu	server	to	stop	OpenMRS,	backup	MySQL	and	other	OpenMRS	files,	and	restart	the	application.	This	script	runs
overnight	while	the	clinic	is	closed.	Weekly,	Claudine	manually	checks	the	disk	space	and	runs		apt-get	upgrade		to	update
system	components.	Every	month,	Claudine	checks	the	OpenMRS	web	site	for	OpenMRS	upgrades	and	upgrades	to	the	modules
the	clinic	uses.

Maintenance

102



Troubleshooting	Your	Installation

Unfortunately,	sometimes	things	do	not	go	exactly	planned.	This	chapter	can	help	you	deal	with	the	most	common	problems.

We	recommend	using	Apache	Tomcat	6.0.29	to	run	OpenMRS.	Any	J2EE-compliant	Java	servlet	container	should	be	able	to	run
it,	but	most	people	who	use	OpenMRS	are	running	it	with	Tomcat,	which	may	make	it	easier	to	get	support	if	you	encounter
problems.

If	you	are	not	yet	using	Tomcat	6.0.29,	consider	upgrading	Tomcat	before	you	continue.	We	recommend	getting	Tomcat	from	this
link.

http://tomcat.apache.org/

When	troubleshooting	Tomcat,	your	first	step	should	always	be	to	review	the	Tomcat	logs.	In	Windows,	these	are	stored	at	the
following	location.

C:\Program	Files\Apache	Software	Foundation\Tomcat	6.0\logs

Historically,	MySQL	has	been	recommended	as	the	database	of	choice	to	use	with	OpenMRS.	The	newer	database	from	the	open
source	project	MariaDB	should	also	be	compatible	with	OpenMRS.	Work	is	underway	in	the	OpenMRS	community	to	provide
support	for	other	databases	such	as	Oracle,	Microsoft	SQL	Server,	and	others,	but	these	databases	are	not	yet	supported.

You	may	not	be	able	to	resolve	your	problem	with	OpenMRS	using	the	troubleshooting	material	in	this	chapter.	That	is	OK	--	the
OpenMRS	community	is	available	to	help!	Check	out	the	Getting	Help	from	the	OpenMRS	Community	chapter	for	more
information	about	how	to	communicate	with	others,	ask	questions,	and	get	answers.

Some	possible	problems	and	solutions

OpenMRS	fails	to	install	with	message	"Error	creating	bean	with	name
'messageSourceServiceTarget'"

Troubleshooting

103

http://tomcat.apache.org/


MySQL	must	be	running	before	starting	and	installing	OpenMRS.	If	it	is	not,	you	may	see	the	following	error	message	in	your
web	browser	and	log	files	when	you	attempt	to	install	OpenMRS:

org.springframework.beans.factory.BeanCreationException:Error	creating	bean	with	name	'messageSourceServiceTarg

et'	defined	in	class	path	resource	applicationContext-service.xml

Ensure	MySQL	is	installed	and	running	before	attempting	to	start	and	install	OpenMRS.

MySQL	Configure	Instance	hangs	on	starting	the	service,	or	reports	Error	1045

On	Windows,	the	computer	may	stop	responding	while	running	the	MySQL	Configure	Instance	tool.	Most	commonly,	this	occurs
before	the	tool	marks	Starting	the	service	as	complete,	because	there	is	already	a	MySQL	service	running.

To	fix	this,	you	should	delete	the	pre-existing	MySQL	service	in	Windows,	and	try	the	installation	again.	You	can	find	instructions
on	how	to	do	delete	a	MySQL	service	at	this	link.

Alternatively,	you	may	see	a	MySQL	Error	1045,	if	your	computer	has	previously	had	a	MySQL	instance	installed.	This	means
that	the	root	password	is	incorrect,	and	is	most	commonly	caused	by	residual	data	from	the	previous	installation.

To	fix	this,	you	should	delete	the	MySQL	data	directory.	On	Windows	7,	you	may	need	to	reboot	and	delete	the	directory,	or	to
use	an	unlocking	program	in	order	to	delete	this	directory.

You	can	also	change	the	password	that	OpenMRS	uses	to	access	your	MySQL	database,	by	editing	the	openmrs-
runtime.properties	file,	as	described	later	in	this	chapter.

Starting	Tomcat	service	on	Windows	fails

If	you	cannot	start	the	Tomcat	service	on	Windows,	try	checking	the	Tomcat	logs.	You	can	find	the	logs	in	the	following	directory.

<TOMCAT	HOME>\logs

Errors	like	"Failed	creating	java	C:\Program	Files\Java\jre1.6.0\bin\client\jvm.dll"

To	fix	this	problem,	search	for	msvcr71.dll	on	your	hard	drive,	and	copy	that	file	to	this	location.

C:\Windows\System32

Installing	OpenMRS	or	running	database	updates	fails	with	message	“Could	not
acquire	change	log	lock”

To	prevent	conflicting	updates,	liquibase	begins	each	update	by	creating	a	row	in	the	liquibasechangeloglock	table.	This	row	acts
as	a	lock.	If	OpenMRS	or	Apache	Tomcat	crashes	while	an	update	is	in	progress,	the	update	may	fail	to	complete

and	this	row	will	not	be	removed	from	the	table.

You	may	see	the	following	error	message	in	your	web	browser	or	in	the	Tomcat	logs,	the	next	time	you	start	up	or	attempt	to
install	or	update	OpenMRS:

"Error	Could	not	acquire	change	log	lock"

Deleting	this	row	from	the	liquibasechangeloglock	table	will	solve	the	problem,	and	allow	installation	or	updates	to	proceed
normally.	To	delete	rows	from	the	liquibasechangeloglock	table	using	a	command	line	SQL	client,	run	either	of	the	following
SQL	commands:

truncate	table	liquibasechangeloglock;

Troubleshooting

104

http://www.howtogeek.com/howto/windows-vista/how-to-delete-a-windows-service-in-vista-or-xp/


delete	from	liquibasechangeloglock;

If	you	prefer	to	use	a	GUI	client	for	MySQL,	you	should	navigate	to	the	liquibasechangeloglock	table	and	delete	all	rows	from
that	table.	When	you	have	cleared	the	table,	restart	Tomcat	if	necessary,	and	restart	OpenMRS.

Problems	connecting	to	Tomcat	on	port	8080

Other	installed	programs	may	already	be	using	port	8080.	This	will	prevent	Tomcat	using	this	port.	Some	software	may	also	use
port	8005,	which	should	not	interfere	with	running	Tomcat,	but	may	prevent	it	from	starting	up	correctly.

If	you	know	what	program	is	using	these	ports,	you	may	choose	to	stop	or	remove	that	program.	Alternatively,	you	can	configure
Tomcat	to	run	on	a	different	port	by	editing	Tomcat’s	server.xml	file	to	change	8080	to	a	different	value	(eg	8090).

If	you	need	further	help,	see	the	"Getting	Help	from	the	OpenMRS	Community"	chapter	for	more	information.

Permission	problems	when	running	Tomcat	as	a	service	on	Ubuntu

If	you	are	trying	to	run	Tomcat	as	a	server	on	Ubuntu,	you	may	run	into	permission	issues.	The	following	error	is	typical	of	these
problems:

java.security.AccessControlException:	access	denied	(java.io.FilePermission	/usr/share/tomcat6/webapps/openmrs/

WEB-INF/dwr-modules.xml	delete)

The	easiest	way	to	solve	this	issue	is	to	disable	the	Java	security	manager	or	similar	startup	script,	which	you	can	find	at	this
location.

/etc/init.d/tomcat6

Edit	the	file	and	set	TOMCAT6_SECURITY	to	no.

#	Use	the	Java	security	manager?	(yes/no)

TOMCAT6_SECURITY=no

Tomcat	stops	responding	after	updating	or	reloading	OpenMRS	in	the	Web
Application	Manager

Tomcat	and	the	JVM	allocate	memory	to	a	webapp	each	time	you	use	the	Update	or	Reload	functions	in	the	Web	Application
Manager.	When	the	app	is	destroyed	or	recreated,	some	of	this	memory	may	not	be	released.	If	you	update	or	reload	the	webapp
too	many	times,	Tomcat	may	run	out	of	allocated	memory,	and	will	stop	responding.	You	will	also	see	the	following	error	in	the
Tomcat	logs:

java.lang.OutOfMemoryError:	PermGen	space

It	is	not	possible	to	completely	avoid	this	problem.	However	you	can	mitigate	it	by	allowing	Tomcat	to	use	more	memory,	or	by
restarting	Tomcat	if	you	have	to	repeatedly	update	or	reload	a	webapp.

Deploying	OpenMRS	using	the	Tomcat	Manager	web	application	fails

For	various	reasons,	trying	to	deploy	OpenMRS	using	the	Tomcat	Manager	web	application	may	fail.	If	this	occurs,	you	should
undeploy	OpenMRS	using	the	Tomcat	Manager,	then	stop	Tomcat.

You	can	do	this	on	the	command	line	under	Linux	or	OS	X.	First,	find	the	process	ID	(PID)	by	running	the	following	command:

Troubleshooting

105



ps	ax	|	grep	tomcat

This	may	return	several	lines,	each	starting	with	a	number.	Look	for	a	long	line	that	contains	something	like	/usr/local/tomcat	or
/opt/tomcat.	The	PID	is	the	first	number	on	that	line.	Stop	Tomcat	with	the	following	command:

kill	-9	PID

Finally,	you	can	restart	Tomcat	as	follows:

service	tomcat6	start

Log	back	into	the	Tomcat	Manager	web	application	and	deploy	OpenMRS	normally.

OpenMRS	(openmrs.war)	deploys	successfully	but	fails	to	start

If	there	are	issues	with	the	OpenMRS	settings	for	application_data_directory,	openmrs.war	may	successfully	deploy,	but	then	fail
to	start.	The	following	messages	are	seen	in	Tomcat's	logs:

SEVERE:	Error	listenerStart

SEVERE:	Context	[/openmrs]	startup	failed	due	to	previous	errors

Ensure	that	the	runtime	properties	file	exists,	and	that	the	application_data_directory	is	specified	in	this	file.	Then	ensure	that	the
directory	exists,	and	that	Tomcat	has	read	and	write	permissions	to	the	directory.

If	the	directory	exists	as	specified	in	the	runtime	properties	file	and	Tomcat	has	the	appropriate	permissions,	you	may	have
security	violation	problems	in	your	Tomcat	configuration.	If	you	need	further	advice,	consider	seeking	help	from	the	community,
as	described	in	the	chapter	"Getting	Help	from	the	OpenMRS	Community".

Unable	to	log	in	to	Tomcat	Manager	due	to	lost	password

The	Tomcat	admin	password	is	required	to	log	in	to	the	Tomcat	Manager	web	application,	and	to	deploy	and	undeploy
applications,	including	OpenMRS.

If	you	have	forgotten,	lost,	or	misplaced	this	password,	you	can	retrieve	it	from	the	file	tomcat-users.xml.	On	Windows,	this	is
probably	located	at	this	location.

C:\Program	Files\Apache	Software	Foundation\Tomcat	6.0\conf\

The	database	password	or	other	properties	are	set	incorrectly

If	you	have	installed	the	OpenMRS	Standalone	application,	you	can	modify	settings	by	editing	the	openmrs-standalone-
runtime.properties	file	in	the	directory	where	you	extracted	the	ZIP	package.

To	modify	settings	for	the	OpenMRS	Enterprise	version,	you	should	edit	the	file	openmrs-runtime.properties.	You	should	find
this	file	in	one	of	the	following	locations:

On	Windows	systems:

C:\Documents	and	Settings\YOURUSERNAME\Application	Data\OpenMRS

C:\Windows\system32\config\systemprofile\Application	Data\OpenMRS

On	Mac	OS	X	or	Linux	systems:

~/YOURUSERNAME/.OpenMRS

Troubleshooting

106



/usr/share/tomcatX/.OpenMRS

The	OpenMRS	administrator	account	password	has	been	forgotten

In	general,	when	a	user	is	locked	out,	the	password	should	be	reset	by	the	administrator	using	the	"Edit	User"	page	from	the
OpenMRS	Administration	page.	In	rare	situations	in	which	the	administrator's	account	has	been	forgotten,	the	only	way	to	reset
the	password	is	to	directly	modify	the	OpenMRS	database.	This	should	only	be	attempted	by	advanced	users,	and	you	should
always	back	up	your	database	before	making	changes.

You	will	need	to	modify	the	users	table	in	the	OpenMRS	database	schema.	Find	the	row	for	the	user	in	question	and	change	the
password	and	salt	values	to	the	following:

password:	4a1750c8607d0fa237de36c6305715c223415189

salt:	c788c6ad82a157b712392ca695dfcf2eed193d7f

Some	module	pages	throw	java.lang.ClassNotFoundException

There	are	currently	some	issues	with	compatibility	between	OpenMRS	and	versions	of	Apache	Tomcat	later	than	6.0.29.
OpenMRS	modules	that	rely	on	certain	custom	expression	language	functions	will	throw	ajava.lang.ClassNotFoundException
exception.

If	you	encounter	this	issue	using	a	version	of	Tomcat	greater	than	v6.0.29,	you	may	need	to	disable	any	modules	that	rely	on
custom	expression	language	functions,	or	install	Tomcat	6.0.29	for	use	with	OpenMRS.

Starting	OpenMRS	fails	with	message	“Module	file	does	not	have	the	correct	.omod
file	extension”

OpenMRS	will	not	start	if	there	are	non-modules	in	the	modules	directory.	You	may	find	a	message	in	the	logs	similar	to	these:

org.openmrs.module.ModuleException:	Module	file	does	not	have	the	correct	.omod	file	extension	Module:	derby.lo

g

org.openmrs.module.ModuleException:	Module	file	does	not	have	the	correct	.omod	file	extension	Module:	velocity

.log

To	solve	this	problem,	delete	or	move	any	files	in	the	modules	directory	that	are	not	modules	with	an.omodextension.

In	particular,	the	BIRT	Runtime	creates	various	log	files	in	the	modules	directory	when	the	BIRT	module	is	stopped.	If	you	are
using	the	BIRT	Report	module,	there	may	be	non-module	files	in	the	OpenMRS	modules	directory--typically,	derby.log	or
velocity.log.	These	files	can	safely	be	moved	to	another	location	or	deleted.

To	prevent	thederby.logfrom	being	created	in	future,	delete	the	directory	org.apache.derby.core_10.1.2.1	which	is	located	under
the	following	directory.

birt-runtime-2_2_0/ReportEngine/plugins/

MySQL	packet	length	errors,	or	MySQL	Error	2006

These	errors	occur	when	the	client	or	server	tries	to	handle	data	larger	than	the	maximum	packet	length.	The	default	maximum
packet	length	is	1MB.	Some	items	(such	as	form	data)	can	easily	exceed	this	maximum,	causing	errors	when	importing	data	into
or	exporting	data	from	the	OpenMRS	database.

To	increase	the	maximum	packet	length	allowed	by	your	MySQL	server,	you	should	stop	the	server,	edit	the	configuration	file,
then	restart	the	server.	The	configuration	file	is	typically	located	at	one	of	these	locations.

Troubleshooting

107



Windows:	C:\Program	Files\MySQL\MySQL	Server	x.x\my.ini

Linux	or	Mac	OS	X:	/etc/my.cnf

This	file	should	already	contain	a	section	with	the	header	[archive:mysqld].	You	can	add	the	following	line	below	that	header:

max_allowed_packet=64M

You	can	also	increase	the	maximum	packet	length	using	the	MySQL	Administrator	application,	by	opening	the	Health	section	and
changing	the	max_allowed_packet	setting	on	the	System	Variables	tab.	This	setting	can	be	increased	up	to	a	maximum	of	1024M
as	necessary.

Depending	on	your	MySQL	client,	you	may	also	need	to	adjust	the	maximum	packet	length	of	the	client.	If	you	are	using	the
MySQL	command	line	client,	you	can	start	it	with	an	increased	max_allowed_packet	by	adding	the	following	after	the	MySQL
command:

--max_allowed_packet=64M

Problems	connecting	to	MySQL	on	a	system	with	multiple	MySQL	installations

If	MySQL	is	already	installed	and	running	on	your	system,	OpenMRS	Standalone's	initial	setup	may	be	unable	to	create	the
OpenMRS	user	and	database.	You	may	also	encounter	this	problem	after	installation,	if	you	have	installed	a	"traditional"	MySQL
server	and	try	to	run	OpenMRS	Standalone.

This	problem	happens	because	MySQL	clients	on	UNIX-based	systems	always	use	UNIX	sockets	to	connect	to	MySQL	when
localhost	is	specified	in	the	connection	URL.	This	is	a	known	issue/limitation/bug	in	MySQL	and	is	documented	in	more	detail
by	the	MySQL	project.

http://bugs.mysql.com/bug.php?id=31577

It	is	possible	to	run	OpenMRS	in	a	separate	database	instance	than	the	one	already	existing	on	your	system	(for	example,	to	run
OpenMRS	Standalone	on	a	system	where	MySQL	is	already	installed).	To	do	so,	you	must	first	ensure	that	the	new	database
instance	is	running	on	a	different	port.

Then,	ensure	that	you	are	connecting	to	MySQL	via	TCP/IP	instead	of	using	the	same	UNIX	socket	as	the	existing	instance.	The
easiest	way	to	do	this	is	to	use	127.0.0.1	instead	of	localhost	in	the	connection	string.	An	alternative	is	to	add
&server.port=XXXX	to	the	value	of	connection.url	in	the	openmrs-runtime.properties	file,	where	XXXX	is	the	port	used	by
the	OpenMRS	MySQL	instance.

For	example,	if	the	MySQL	instance	used	by	OpenMRS	is	running	on	port	4242,	the	openmrs-runtime.properties	file	should
include	one	of	the	following	lines:

connection.url=jdbc:mysql://127.0.0.1:4242/openmrs?autoReconnect=true&sessionVariables=storage_engine=InnoDB&us

eUnicode=true&characterEncoding=UTF-8

connection.url=jdbc:mysql://localhost:4242/openmrs?autoReconnect=true&sessionVariables=storage_engine=InnoDB&us

eUnicode=true&characterEncoding=UTF-8&server.port=4242

Tomcat	error	log	contains	IOException	while	loading	persisted	sessions

Apache	Tomcat	tries	to	restore	the	exact	memory	state	after	each	restart.	OpenMRS	does	not	depend	on	this	feature,	so	you	can
ignore	any	warnings	printed	to	the	Tomcat	logs	that	look	similar	to	the	following:

SEVERE:	IOException	while	loading	persisted	sessions:	java.io.WriteAbortedException:	writing	aborted;	java.io.N

otSerializableException:

Troubleshooting

108

http://bugs.mysql.com/bug.php?id=31577


If	you	find	these	messages	annoying,	you	can	turn	off	session	persistence.	Edit	the	<TOMCAT_HOME>/conf/server.xml	file
and	uncomment	the	line	that	includes:

<Manager	pathname=""	/>

Java	Heap	Size	errors

OpenMRS	uses	a	lot	of	memory	for	caching.	Certain	tasks,	such	as	exporting	data,	may	cause	a	Java	Heap	Size	error.	You	can
mitigate	this	by	increasing	the	default	memory	allocation	in	Tomcat.

If	you	are	starting	Tomcat	on	the	command	line,	you	should	pass	the	following	parameters	to	increase	the	default	memory
allocation:

-Xmx512m	-Xms512m	-XX:PermSize=256m	-XX:MaxPermSize=256m	-XX:NewSize=128m

If	you	are	running	Tomcat	as	a	Windows	Service,	you	can	increase	the	memory	allocation	by	adding	this	same	line	to	the	list	of
start	parameters.	Make	sure	that	you	add	this	to	the	end	of	the	existing	parameters	exactly.	An	extra	space	at	the	end	of	the	line
can	prevent	Tomcat	from	starting	properly.	You	can	find	the	list	of	start	parameters	in	the	Tomcat	Monitor	application,	by	going	to
Configure	Tomcat	>	Java	>	Java	Options,	or	via	the	Control	Panel	>	Services	>	Apache	Tomcat	>	Properties	>	Start
Parameters.

If	you	are	running	a	64-bit	version	of	Tomcat	as	a	Windows	Service,	you	must	edit	the	Windows	Registry	to	add	that	line	to	the
HKEY_LOCAL_MACHINE\SOFTWARE\Apache	Software	Foundation\Procrun	2.0\Tomcat5\Parameters\JavaJVM
settings	in	the	Registry.

If	you	are	running	Tomcat	on	Ubuntu,	edit	its	startup	script	such	as	/etc/init.d/tomcat6	and	make	the	following	changes:

if	[	-z	"$JAVA_OPTS"	];	then

								JAVA_OPTS="-Djava.awt.headless=true	-Xmx128M"

fi

if	[	-z	"$JAVA_OPTS"	];	then

								JAVA_OPTS="-Djava.awt.headless=true	-Xmx1024M	-Xms1024M	-XX:PermSize=256m	-XX:MaxPermSize=256m	-XX:NewS

ize=128m"

fi

If	you	are	running	Tomcat	as	a	Linux	service,	open	the	/etc/init.d/tomcat	script	and	append	change	the	CATALINA_OPTS
variable:

CATALINA_OPTS="-Djava.library.path=/opt/tomcat/lib/.libs	-Xmx512m	-Xms512m	-XX:PermSize=256m	-XX:MaxPermSize=25

6m	-XX:NewSize=128m"

Memory	leaks

After	troubleshooting,	you	may	determine	that	Tomcat	or	OpenMRS	is	having	problems	with	memory	leaks.

To	mitigate	memory	leak	problems	in	Tomcat,	consider	enabling	pooling	by	adding	the	following	element	to	the	JSP	servlet
definition	in	the	file	<TOMCAT_HOME>/conf/web.xml:

<init-param><param-name>enablePooling</param-name><param-value>false</param-value></init-param>

Troubleshooting

109



If	you	believe	you	have	discovered	a	memory	leak	in	OpenMRS	and	are	comfortable	looking	at	the	OpenMRS	application	code	to
identify	where	the	leak	is	located,	you	may	like	to	troubleshoot	further	to	find	out	the	cause.	OpenMRS	developers	use	YourKit
Profiler	to	discover	and	debug	memory	and	CPU	consumption	issues.

YourKit	is	kindly	supporting	members	of	the	OpenMRS	community	with	its	full-featured	Java	Profiler	product.	If	you	have
development	skills	you	may	want	to	use	this	tool	to	understand	why	the	application	is	leaking	memory	or	consuming	too	many
processor	resources.	As	an	active	participant	in	the	OpenMRS	community,	you	can	request	a	license	by	opening	a	support	desk
ticket:

https://help.openmrs.org/

Bugs	in	OpenMRS
If	you	believe	you	have	discovered	a	problem	that	may	be	a	bug	in	OpenMRS,	we	encourage	you	to	report	that	bug.	The
OpenMRS	development	team	takes	bug	reports	seriously	and	continually	fixes	as	many	bug	reports	as	possible	for	future	releases.
Please	see	our	bug	report	page	on	the	OpenMRS	wiki	for	further	details	and	instructions:

https://issues.openmrs.org/

Troubleshooting

110

https://help.openmrs.org/
https://issues.openmrs.org/


Getting	Help	from	the	OpenMRS	Community
A	2011	meeting	of	the	OpenMRS	community	in	Kigali,	Rwanda.	

OpenMRS	is	supported	by	a	vibrant	community.	Whether	you	need	help	installing,	using,	updating	or	extending	OpenMRS,	you
can	find	help	in	a	variety	of	places.

OpenMRS	ID

OpenMRS	ID	is	an	account	used	to	participate	in	most	of	the	community	resources	to	support	implementers	and	developers,	and
is	required	to	use	most	of	the	tools	on	this	page.	Learn	more	about	OpenMRS	ID	and	sign	up	online

https://id.openmrs.org/

OpenMRS	Wiki
Documentation	for	OpenMRS	is	available	in	the	wiki.

http://wiki.openmrs.org

You	can	find	information	for	users	and	developers,	as	well	as	details	of	shared	modules	and	other	resources.

You	can	search	for	information	in	the	wiki	using	the	search	bar	at	the	top	of	the	page.	Alternatively,	use	the	links	on	the	left	of	the
page	to	navigate	to	the	relevant	section.

If	you	find	an	error	in	the	information	on	the	wiki,	please	correct	it	if	you	can!	If	you	do	not	already	have	an	OpenMRS	ID,	you
can	register	for	free	using	the	Sign	Up	link	at	the	top	of	the	page.	After	logging	in,	you	will	see	an	Edit	button	at	the	top	of	most
pages.	Click	this	button,	make	your	changes,	and	click	Save.	If	you	are	not	certain	about	making	an	edit,	just	leave	a	comment	on
the	page	with	your	questions	or	concerns.	We	appreciate	your	help!

Getting	Help	from	the	OpenMRS	Community

111

https://id.openmrs.org/
http://wiki.openmrs.org/


OpenMRS	Talk	forums

Most	of	the	discussion	within	the	community	occurs	within	OpenMRS	Talk	available	at:

https://talk.openmrs.org/

The	implementers	mailing	list	is	a	community	mailing	list	for	people	using,	considering	using,	or	otherwise	interested	in
OpenMRS.	You	can	ask	questions,	seek	advice,	and	learn	from	others	on	the	mailing	list.	Search	the	archives	for	similar	problems
before	you	post	-	someone	else	may	have	already	answered	your	questions!

Ask	OpenMRS

Ask	OpenMRS	is	a	safe	place	to	ask	questions	about	installing	and	using	OpenMRS	and	to	get	answers	from	others	in	the
community.

https://ask.openmrs.org/

If	you	ask	a	question	and	get	some	answers,	please	be	courteous	by	selecting	the	best	answer	(this	helps	people	that	come	later
with	the	same	question	to	more	easily	find	the	best	answer).	As	you	gain	experience,	help	contribute	to	the	community	by	helping
the	answers	of	others	in	the	community.

IRC

Internet	Relay	Chat	(IRC)	is	a	protocol	for	real-time	Internet	chat.	The	OpenMRS	community	use	the	#OpenMRS	chat	room	on
irc.freenode.net.

For	more	information	on	how	to	connect	to	IRC	visit:

http://om.rs/irc

All	IRC	discussions	are	logged	and	available	online.

Telegram

Join	real	time	discussions	on	Telegram.	You	can	chat	through	a	web	browser	or	with	a	mobile	application.	Join	the	OpenMRS
Telegram	chat	at:

http://om.rs/tg

Having	trouble?
If	you	have	problems	with	your	OpenMRS	ID,	or	with	any	of	the	tools	listed	above,	please	open	a	support	desk	ticket	and
someone	will	respond	to	your	issue.

http://om.rs/helpdesk

If	you	are	not	able	to	log	in	when	creating	the	ticket,	please	remember	to	include	your	name	and	contact	information.

Getting	Help	from	the	OpenMRS	Community

112

https://talk.openmrs.org/
https://talk.openmrs.org/
https://ask.openmrs.org/
http://om.rs/irc
https://telegram.org
http://om.rs/tg
http://om.rs/helpdesk


Epilogue

113



Leaving	Amani	Clinic

We	now	end	our	visit	to	Amani	Clinic.	We	saw	how	the	clinic	management	started	with	the	idea	of	using	a	medical	information
system	to	support	the	workflow	of	their	clinic.	They	implemented	OpenMRS	to	manage	their	data,	evaluate	and	report	on	their
project's	effectiveness,	and	ultimately	improve	care	for	their	patients.

Claudine,	Daniel,	James,	and	Kissa	all	had	challenges	in	planning	and	getting	used	to	new	ways	of	working,	but	we	can	believe
that	their	increased	ability	to	better	manage	health	care	delivery	will	result	in	healthier,	happier	people	in	the	village	of	Kisiizi.

We	hope	you	have	found	their	story,	along	with	the	information	presented	in	this	guide,	useful	in	thinking	about	your	own
situation.

As	a	reminder,	this	book	serves	only	as	an	introduction	to	the	OpenMRS	medical	record	system	and	our	larger	open	source
community.	You	are	now	a	member	of	a	new	extended	family	of	people	working	together	to	make	and	improve	technology	for
health	care	on	every	continent.	We	hope	you	will	be	as	excited	as	we	are	to	make	a	difference	in	our	communities,	and	we	hope	to
see	you	in	our	mailing	lists	and	wikis,	and	hear	you	in	our	meetings	very	soon.

Welcome	and	good	luck!

Leaving	Amani	Clinic

114



Leaving	Amani	Clinic

115



About	this	Book

This	is	your	book!

OpenMRS	is	open	source.	That	means	anyone	in	the	world	can	help	improve	the	code.	Likewise,	this	electronic	book	is	open
source	as	well,	meaning	anyone	is	welcome	to	help	improve	this	Implementers	Guide	too	(see	below	on	how	to	contribute)!	The
source	for	this	book	is	hosted	on	GitHub.

See	an	error?	Want	to	suggest	updates	or	help	improve	the	guide?	Learn	how	to	contribute.

History	of	this	book

This	first	edition	of	this	book	was	created	in	October	2011	during	the	first	Google	Summer	of	Code	Documentation	Sprint.	We	are
indebted	to	the	Google	Open	Source	Programs	Office,	the	FLOSS	Manuals	foundation,	and	Aspiration	for	organizing	this	week-
long	event	where	four	open	source	projects	(OpenMRS,	Sahana	Eden,	OpenStreetMap,	and	KDE)	joined	forces	to	share
knowledge	and	create	manuals	for	their	user	communities.

The	authors	for	the	first	version	were	Rafal	Korytkowski	(Poland),	Glen	McCallum	(Canada),	Nóirín	Plunkett	(Ireland),	Darius
Jazayeri	(United	States),	and	Michael	Downey	(United	States).

We	received	proofreading,	structural	advice,	and	editing	assistance	from	Paul	Biondich	(United	States),	Hamish	Fraser	(United
States),	Allen	Gunn	(United	States),	Daniel	Kayiwa	(Uganda),	Burke	Mamlin	(United	States),	Saptarshi	Purkayastha	(India),	Janet
Riley	(United	States),	and	Ben	Wolfe	(Kenya).

About	this	Book

116

https://github.com/openmrs/openmrs-book-guide/blob/master/CONTRIBUTING.md


Photographs	in	this	book	are	courtesy	of	James	Arbaugh,	Michael	J.	Downey,	Frank	Fries,	Mathew	Ssemakadde,	and	Stephanie
Taylor.	The	original	book	cover	was	designed	by	Laleh	Torabi.

We	would	also	like	to	thank	the	countless	people	who	have	contributed	to	OpenMRS	documentation	over	the	past	seven	years,
and	the	writing	team	of_CivicCRM:	A	Comprehensive	Guide,_all	of	which	served	as	inspiration	and	the	basis	for	much	of	this
book.	The	OpenMRS	community	thanks	everyone	who	participated	in	making	this	book	a	reality.	Thank	you!

About	this	Book

117



Appendices

118



Appendix	A:	Glossary
administrative	staff:	Individuals	who	manage	people	or	data	in	a	clinical	setting.

allergy	list:	A	series	of	allergies	that	a	patient	might	have	or	from	which	a	patient	could	be	suffering.

bug:	A	repeatable	problem	in	OpenMRS.

bug	report:	A	report	created	describing	a	repeatable	problem	to	software	developers.

bundled	module:	An	OpenMRS	module	that	is	included	with	a	downloaded	OpenMRS	installation.

check	digit:	An	extra	digit	that	is	added	to	the	end	of	an	identifier	and	depends	on	the	rest	of	identifier.

clinician:	A	doctor,	nurse,	or	other	clinical	officer	who	provides	health	care	to	patients.

cohort:	A	group	of	patients	that	can	be	defined	by	one	or	more	common	traits.

concept:	The	idea	that	encompasses	any	question	which	can	be	asked	about	a	patient;	an	observable	point	of	data.

concept	class:	A	category	of	OpenMRS	Concepts	with	associated	traits.

concept	datatype:	A	descriptor	of	the	type	of	data	which	a	given	OpenMRS	Concept	describes	(e.g.,	numeric,	text,	etc.).

concept	dictionary:	A	list	of	all	the	medical	and	program-related	terms	used	in	OpenMRS	as	questions	and	answers.

customization:	The	idea	of	adapting	a	system	to	suit	one's	specific,	particular	needs.

data:	A	piece	of	knowledge	that	can	be	reduced	to	a	single	value.

demographics:	Information	about	a	person,	typically	including	date	of	birth,	location,	name,	etc.

drug:	A	specific	formulation	of	a	medication	represented	in	OpenMRS.

electronic	medical	record:	A	computer	system	that	allows	for	recording,	storage,	and	retrieval	of	information	related	to	the
delivery	of	health	care	to	patients.

encounter:	A	clinical	transaction	between	a	patient	and	one	or	more	healthcare	providers	for	the	purpose	of	providing	patient
services	or	assessing	the	health	status	of	the	patient.	An	encounter	happens	at	one	point	in	time.
http://www.astm.org/Standards/E1384.htm

error:	A	message	in	a	computer	system	that	describe	a	problem	currently	or	recently	occurring.

flag:	A	visual	indicator	of	certain	criteria	on	a	patient	chart.

form:	An	electronic	form	that	may	be	used	for	entering	or	viewing	data.

Groovy:	A	computer	scripting	language	that	allows	automation	and	quick	performance	of	tasks.

implementation	plan:	A	written	document	which	details	specific	goals	and	tasks	in	installing,	customizing,	and	using	OpenMRS.

implementation	team:	A	defined	group	of	people	working	together	to	deploy	OpenMRS	in	a	specific	project.

implementer:	Someone	who	has	or	is	in	the	process	of	deploying	OpenMRS	in	a	specific	location	or	context	of	use.

informatics:	The	study	of	information	technology	applied	to	a	specific	domain.

internationalization:	The	adaptation	an	information	system	or	pieces	of	information	to	be	used	in	multiple	locations.

IRC:	Short	for	Internet	Relay	Chat,	an	online	tool	to	communicate	with	others	in	"real	time."	OpenMRS	uses	IRC	to	allow
developers	and	implementers	to	collaborate	and	meet.http://go.openmrs.org/irc

Appendix	A:	Glossary

119

http://www.astm.org/Standards/E1384.htm
http://go.openmrs.org/irc


local	area	network:	A	method	of	connecting	multiple	computers	for	communication	over	distances.

location:	A	physical	place	where	a	patient	may	receive	healthcare	services.

longitudinal:	Having	a	goal	of	observing	or	trending	over	time.

mailing	list:	A	collection	of	names	and	addresses	used	by	a	company	to	send	material	to	multiple	recipients.	On	the	internet,
mailing	lists	include	each	person's	e-mail	address	rather	than	a	postal	address.
http://www.entrepreneur.com/encyclopedia/term/82424.html

medical	informatics:	A	discipline	of	studying	the	use	of	information	technology	in	the	field	of	medical	science.

metadata:	A	piece	of	information	that	describes	other	information.

module:	A	software	package	that	extends	OpenMRS	functionality	in	specific	ways;	often	developed	by	others	in	the	OpenMRS
community.

module	repository:	An	online	resource	to	find	and	maintain	community-developed	OpenMRS	add-on	modules.
http://modules.openmrs.org/

observation:	One	piece	of	information	that	is	recorded	about	a	person	at	a	moment	in	time.

open	source:	A	method	of	developing	software	where	the	source	code	is	freely	available	for	others	to	examine,	use,	and	build
upon.	Also	a	type	of	software	development	community	based	around	sharing	of	work	and	collaboration.

order:	An	action	that	a	provider	requests	be	taken	regarding	a	patient.

patient:	A	person	receiving	health	care	services.

patient	dashboard:	A	visual	representation	of	a	patient	within	OpenMRS,	including	his	or	her	demographics	and	other	important
information.

patient	identifier:	Any	unique	number	that	can	identify	a	patient.	Examples	are	a	Medical	Record	Number,	a	National	ID,	a
Social	Security	Number,	a	driver's	license	number,	etc.

person:	Every	individual	who	is	referred	to	in	any	patient's	record	in	OpenMRS	must	be	stored	in	the	system.

person	attribute:	store	additional	pieces	of	information	about	the	people	in	your	system	in	addition	to	those	that	are	natively
supported	by	OpenMRS.

pilot	project:	Actively	planned	as	a	test	or	trial.

platform:	A	computer	system	that	is	simple	by	design,	intended	to	be	customized	and	adapted	for	use	in	a	wide	variety	of
contexts.

privilege:	A	definition	of	what	actions	a	user	is	allowed	to	take	within	OpenMRS.

problem	list:	A	list	of	a	patient's	problems	that	serves	as	an	index	to	his	or	her	record.	Each	problem,	the	date	when	it	was	first
noted,	the	treatment,	and	the	desired	outcome	are	added	to	the	list	as	each	becomes	known.	Thus	the	list	provides	an	ongoing
guide	for	reviewing	the	health	status	and	planning	the	care	of	the	patient.

http://medical-dictionary.thefreedictionary.com/master+problem+list

profile:	An	OpenMRS	user's	basic	information,	including	name,	user	ID,	password,	and	language	preferrence.

program:	A	planned	series	of	administrative	or	research	events.

program	enrollment:	Represents	the	fact	that	a	patient	is	enrolled	in	one	of	these	Programs	over	a	time	period	at	a	Location.

provider:	A	health	care	professional,	or	group	of	health	care	professionals	who	provide	a	service	to	patients.

purge:	To	permanently	delete	data	from	the	OpenMRS	database.

Appendix	A:	Glossary

120

http://www.entrepreneur.com/encyclopedia/term/82424.html
http://modules.openmrs.org/
http://medical-dictionary.thefreedictionary.com/master+problem+list


relationship:	A	description	of	how	two	persons	in	OpenMRS	are	connected,	e.g.,	mother	and	child.

retire:	To	make	metadata	unusable	in	the	future	while	retaining	it	in	OpenMRS	for	past	reference.

role:	Represents	a	group	of	privileges	in	OpenMRS.

sample	data:	Fictional,	anonymized	information	representing	patient	care	within	OpenMRS.	Some	versions	of	the	software
include	this	artificial	data	to	make	it	easier	to	plan	an	OpenMRS	implementation.

SMART	goals:	Objectives	for	a	project	that	are	specific,	measurable,	attainable,	realistic,	and	timely.

software	developer:	A	person	who	is	able	to	program	customizations	or	additional	functionality	in	OpenMRS.

state:	A	condition	or	situation;	status.

super	user:	An	OpenMRS	user	with	permission	to	perform	all	management	tasks	in	the	application.

system	administrator:	A	person	who	is	responsible	for	day-to-day	maintenance	of	a	computer	system	or	network.

uninterruptible	power	supply:	A	battery-based	system	that	provides	instant	short-term	power	to	a	computer	or	other	devices
during	a	power	outage.

unretire:	To	re-designate	metadata	as	usable.

unvoid:	Make	data	visible	in	OpenMRS	that	had	previously	been	voided.

user:	A	person	who	uses	OpenMRS,	or	more	specifically	the	data	in	the	system	representing	that	person.

visit:	A	collection	of	one	or	more	encounters	that	define	an	interaction	between	the	patient	and	the	healthcare	system.	Some
common	examples	of	visits	include	outpatient	clinic	visits,	inpatient	visits	(hospitalization),	and	emergency	room	visits.

void:	To	mark	data	as	deleted	from	a	user	perspective,	but	retain	it	in	the	OpenMRS	database.

wiki:	A	web	site	containing	documentation	and	other	resources	for	a	project	or	organization.

workflow:	A	series	of	tasks	to	accomplish	a	goal.

Appendix	A:	Glossary

121



Appendix	B:	Example	HTML	Form	Source

<htmlform>

				<!--	Autogenerated	example	form		(template	from	01-Nov-2010	-->

		<macros>

								paperFormId	=	(Fill	this	in)

								headerColor	=#009d8e

								fontOnHeaderColor	=	white

		</macros>

		<style>

								.section	{

												border:	1px	solid	$headerColor;

												padding:	2px;

												text-align:	left;

												margin-bottom:	1em;

								}

								.sectionHeader	{

												background-color:	$headerColor;

												color:	$fontOnHeaderColor;

												display:	block;

												padding:	2px;

												font-weight:	bold;

								}

								table.baseline-aligned	td	{

												vertical-align:	baseline;

								}

		</style>

		<span	style="float:right">Paper	Form	ID:	$paperFormId</span>

		<h2>Amani	Antenatal	History	(v1.0)</h2>

		<section	headerLabel="1.	Encounter	Details">

				<table	class="baseline-aligned">

						<tr>

								<td>Date:</td>

								<td>

										<encounterDate	default="today"/>

								</td>

						</tr>

						<tr>

								<td>Location:</td>

								<td>

										<encounterLocation/>

								</td>

						</tr>

						<tr>

								<td>Provider:</td>

								<td>

										<encounterProvider/>

								</td>

						</tr>

						<tr>

								<td>Patient	Name:</td>

								<td>

										<lookup	class="value"	expression="patient.personName"/>

								</td>

						</tr>

				</table>

		</section>

		<section	headerLabel="2.	Antenatal	History">

				<table	border="1"	cellspacing="0"	class="baseline-aligned">

						<tr>

								<td>

Appendix	B:	Example	HTML	Form	Source

122



										<table	border="1"	cellspacing="0">

												<tr>

														<td>

																<table>

																		<tr>

																				<td>

																						<b>Reason	For	Visit:</b>

																				</td>

																				<td>

																						<obs	conceptId="1433"	style="radio"	answerConceptIds="1435,1434,5622"	answerLabels="Plann

ing	Pregnancy&lt;br	\/	&gt;,	Currently	Pregnant&lt;br	\/	&gt;,	Other"/>

																				</td>

																		</tr>

																</table>

														</td>

												</tr>

												<tr>

														<td>

																<table>

																		<tr>

																				<td>

																						<b>Antenatal	Visits	#:</b>

																				</td>

																				<td>

																						<obs	conceptId="1425"/>

																				</td>

																		</tr>

																</table>

														</td>

												</tr>

												<tr>

														<td>

																<table>

																		<tr>

																				<td>

																						<b>If	Pregnant,	was

																								<br	/>pregnancy	intended?</b>

																				</td>

																				<td>

																						<obs	conceptId="1426"	style="radio"	answerConceptIds="1065,1066,1067"	answerLabels="Yes&l

t;br	\/	&gt;,	No&lt;br	\/	&gt;,	Unknown"/>

																				</td>

																		</tr>

																</table>

														</td>

												</tr>

												<tr>

														<td>

																<table>

																		<tr>

																				<td>

																						<b>Last	Menstrual	Period:</b>

																				</td>

																				<td>

																						<obs	conceptId="1427"/>

																				</td>

																		</tr>

																</table>

														</td>

												</tr>

												<tr>

														<td>

																<table>

																		<tr>

																				<td>

Appendix	B:	Example	HTML	Form	Source

123



																						<b>Date	of	Delivery:</b>

																				</td>

																				<td>

																						<obs	conceptId="1596"/>

																				</td>

																		</tr>

																</table>

														</td>

												</tr>

												<tr>

														<td>

																<table>

																		<tr>

																				<td>

																						<b>Blood	Type:</b>

																				</td>

																				<td>

																						<obs	conceptId="1426"	style="radio"	answerConceptIds="152674,	152675,	152676,	152677,	152

678,152679,	152680,152681"	answerLabels="A+,	A-&lt;br	\/	&gt;,	B+,	B-&lt;br	\/	&gt;,	0+,	0-&lt;br	\/	&gt;,AB+,	

AB-&lt;br	\/	&gt;"/>

																				</td>

																		</tr>

																</table>

														</td>

												</tr>

										</table>

								</td>

								<td>

										<table	border="1"	cellspacing="0">

												<tr>

														<td>

																<table>

																		<tr>

																				<td>

																						<b>High-Risk	Sex:</b>

																				</td>

																				<td>

																						<obs	conceptId="1355"	style="yes_no"/>

																				</td>

																		</tr>

																</table>

														</td>

												</tr>

												<tr>

														<td>

																<table>

																		<tr>

																				<td>

																						<b>HIV	Test:</b>

																				</td>

																				<td>

																						<obs	conceptId="1356"	style="yes_no"	dateLabel="&lt;br	\/	&gt;Date:"/>

																				</td>

																		</tr>

																</table>

														</td>

												</tr>

												<tr>

														<td>

																<table>

																		<tr>

																				<td>

																						<b>Partner's	HIV	Status:</b>

																				</td>

Appendix	B:	Example	HTML	Form	Source

124



																				<td>

																						<obs	conceptId="1436"	style="radio"	answerConceptIds="664,703,1067"	answerLabels="Negativ

e&lt;br	\/	&gt;,	Positive&lt;br	\/	&gt;,	Unknown"/>

																				</td>

																		</tr>

																</table>

														</td>

												</tr>

												<tr>

														<td>

																<table>

																		<tr>

																				<td>

																						<b>STI	Treatment:</b>

																				</td>

																				<td>

																						<obs	conceptId="1428"/>

																				</td>

																		</tr>

																</table>

														</td>

												</tr>

												<tr>

														<td>

																<table>

																		<tr>

																				<td>

																						<b>RPR/VDRL:</b>

																				</td>

																				<td>

																						<obs	conceptId="299"	style="radio"	answerConceptIds="1228,	1229"	answerLabels="Reactive&l

t;br	\/	&gt;,	NR"/>

																				</td>

																		</tr>

																</table>

														</td>

												</tr>

												<tr>

														<td>

																<table>

																		<tr>

																				<td>

																						<b>Last	Tetnus:</b>

																				</td>

																				<td>

																						<obs	conceptId="1428"/>

																				</td>

																		</tr>

																</table>

														</td>

												</tr>

										</table>

								</td>

								<td>

										<table>

												<tr>

														<td>

																<b>Recent	Contraceptive	Use:</b>

																<br/>

																<obs	conceptId="1635"	answerConceptId="1107"	answerLabel="None"	style="checkbox"/>

																<br/>

																<obs	conceptId="1635"	answerConceptId="780"	answerLabel="Oral	Contraception"	style="checkbox"/>

																<br/>

																<obs	conceptId="1635"	answerConceptId="190"	answerLabel="Condoms"	style="checkbox"/>

																<br/>

Appendix	B:	Example	HTML	Form	Source

125



																<obs	conceptId="1635"	answerConceptId="5277"	answerLabel="Natural	Planning	/	Rhythm"	style="che

ckbox"/>

																<br/>

																<obs	conceptId="1635"	answerConceptId="5278"	answerLabel="Diaphragm"	style="checkbox"/>

																<br/>

																<obs	conceptId="1635"	answerConceptId="1378"	answerLabel="Depo-Provera"	style="checkbox"/>

																<br/>

																<obs	conceptId="1635"	answerConceptId="1359"	answerLabel="Norplant"	style="checkbox"/>

																<br/>

																<obs	conceptId="1635"	answerConceptId="1388"	answerLabel="Surgery"	style="checkbox"/>

																<br/>

																<obs	conceptId="1635"	answerConceptId="5622"	answerLabel="Other"	style="checkbox"/>

																<br/>

														</td>

												</tr>

										</table>

								</td>

								<td>

										<table>

												<tr>

														<td>

																<b>Previous	Complications:</b>

																<br/>

																<obs	conceptId="1430"	answerConceptId="113859"	answerLabel="Hypertension"	style="checkbox"/>

																<br/>

																<obs	conceptId="1430"	answerConceptId="1431"	answerLabel="Low	Birth	Weight	Baby"	style="checkbo

x"/>

																<br/>

																<obs	conceptId="1430"	answerConceptId="119481"	answerLabel="Diabetes	Mellitus"	style="checkbox"

/>

																<br/>

																<obs	conceptId="1430"	answerConceptId="48"	answerLabel="Miscarriage"	style="checkbox"/>

																<br/>

																<obs	conceptId="1430"	answerConceptId="1171"	answerLabel="Cesarean	Section"	style="checkbox"/>

																<br/>

																<obs	conceptId="1430"	answerConceptId="228"	answerLabel="Antepartum	Hemorrhage"	style="checkbox"

/>

																<br/>

																<obs	conceptId="1430"	answerConceptId="230"	answerLabel="Postpartum	Hemorrhage"	style="checkbox"

/>

																<br/>

																<obs	conceptId="1430"	answerConceptId="130"	answerLabel="Puerperal	Sepsis"	style="checkbox"/>

																<br/>

																<obs	conceptId="1430"	answerConceptId="113602"	answerLabel="Prolonged	Labor"	style="checkbox"/>

																<br/>

																<obs	conceptId="1430"	answerConceptId="127847"	answerLabel="Recto-vaginal	Fistula"	style="check

box"/>

																<br/>

																<obs	conceptId="1430"	answerConceptId="49"	answerLabel="Vesico-vaginal	Fistula"	style="checkbox"

/>

																<br/>

																<obs	conceptId="1430"	answerConceptId="5622"	answerLabel="Other"	style="checkbox"/>

																<br/>

														</td>

												</tr>

										</table>

								</td>

						</tr>

				</table>

		</section>

		<submit/>

</htmlform>

Appendix	B:	Example	HTML	Form	Source

126



Appendix	B:	Example	HTML	Form	Source

127



Appendix	C:	Document	History

Version	2.0	(Current)

Released:	June,	2012,	Converted	to	GitBook	format:	November,	2016

Describes	OpenMRS	Version:	1.9.x

Notes:	Updated	to	describe	1.9	changes.	These	include	the	new	Visits	feature,	changes	to	concept	mappings,	and	changes	to
providers.

Version	1.0

Released:	October,	2011

Describes	OpenMRS	Version:	1.8.x

Notes:	The	OpenMRS	Guide	was	created	at	the	Google	Summer	Of	Code/FLOSS	Manual	Documentation	Camp.

Appendix	C:	Document	History

128


	Introduction
	OpenMRS Around the World
	A Brief History
	Example: Amani Clinic
	Is OpenMRS for You?
	Identifying Your Needs
	Transitioning to OpenMRS
	Installation and Initial Setup
	OpenMRS Information Model
	Getting Around the User Interface
	Customizing OpenMRS with Plug-in Modules
	Managing Concepts and Metadata
	Sharing Concepts and Metadata
	Configuring Visits
	The Patient Dashboard In Depth
	Registering Patients
	Data Entry
	HTML Forms
	XForms
	Cohort Builder
	Reporting
	Patient Alerts and Flags
	User Management and Access Control
	Maintenance
	Troubleshooting
	Getting Help from the OpenMRS Community

	Epilogue
	Leaving Amani Clinic
	About this Book

	Appendices
	Appendix A: Glossary
	Appendix B: Example HTML Form Source
	Appendix C: Document History


