Access Control
for Enterprise Apps

Dominic Duggan
Stevens Institute of Technology

Based on material by Lars Olson and
Ross Anderson

SQL ACCESS CONTROL

 Multiple users for Apps (A)
* Apps have elevated privileges (B)

User A

App vs Database Security

Application b

Access
Control Rules

— T
— 4

Database

w

SQL grant Syntax

grant privilege List on resource
to user Llist;

* Privileges: select, insert, etc.
 Resource: table, database, function, etc.
* Individual users

* User group

Griffiths Wade 76

Example

* Alice owns a database table of employees:
—name varchar(50),
—ssn 1nt,
—salary int,
—email varchar(50)

Example

* Bob: read-only access
grant select on employee to bob;
* Carol: read-only access to public info

grant select (name, email)
on employee to carol;

— not implemented in PostgreSQL
— not implemented for select in Oracle
— implemented in MySQL

View-Based Access Control

e Carol: read-only access to public info

create view employee public
as select name,email
from employee;

grant select
on employee public to carol;

Row-Level Access Control

 Employees can access their own record:

create view employee Carol as
select * from employee
where name='Carol';

grant select on employee Carol to carol;

 Employees can update their e-mail addresses:

grant update(email)
on employee Carol to carol;

— (Or create yet another new view...)

Delegating Policy Authority

grant privilege List on resource to
user List with grant option;

e Alice:

grant select on tablel to bob
with grant option;

 Bob:

grant select(columnl) on tablel to carol
with grant option;

SQL revoke Syntax

revoke privilege List on resource
from user List;

e Griffiths-Wade:
— Sequences of grant / revoke operations

— ACLs should be indistinguishable from a sequence
in which the grant never occurred

— Cascading revocations

Disadvantages to SQL Model

* Too many views to create
— Many users, each with their own view
— View redefinitions
— Fine-grained policies each require own view
— Complicated policy logic
— Update anomalies

VIRTUAL PRIVATE DATABASES

Virtual Private Databases

e Security model for Oracle

e Policies: user-defined functions that return where
condition

* Applications can define “context,” e.g. for RBAC

: LT
Query Table policy functionf.
N rd g
User name, VPI? ._Other data , Database
function
App-defined context,

evaluator
<__ Rewritten queh_/

Oracle 05

Features

* Functions executed each time table is
accessed.

 Multiple functions can be attached to a table.

* Different functions can be defined depending
on:
— Operation (read vs. write)
— Columns being accessed

Simple Policy

 Two users, Alice and Bob
e Alice creates a table:

create table data(

a int primary key,

b varchar2(50));
insert into data values(1l, 'hello');
insert into data values(2, 'world');

commit;

e Alice wants to limit Bob’s access to the row where a=1

Simple Policy

e Alice wants to limit Bob’s access to the row
where a=1

* Three steps:

— Grant Bob access to the table:
grant select on data to bob;

— Create a policy function
— Attach the policy function to the table

Simple Policy

create or replace function testFilter
(p_schema varchar2, p_obj varchar2)

return varchar2 as

begin
if (SYS CONTEXT('userenv', 'SESSION USER")
= 'BOB') then
return 'a = 1°';
else
return '';
end if;

end;

17

Simple Policy

execute dbms _rls. add pollcy(

object schema =>

‘alice’,

object name => ’data s

policy name =>
function schema
policy function
statement types
insert’,

update_check =>

'FilterForBob’,

=> 'alice’,

=> 'testFilter',

=> 'select, update,

true);

Logging Policy

create or replace function
testlLogging(p_schema varchar2, p _obj varchar2)

return varchar2 as
begin
insert into alice.logtable values(
sysdate,
SYS CONTEXT('userenv', 'SESSION USER"')
NI
SYS_CONTEXT('userenv', 'CURRENT_SQL'));
commit;
return '';
end;

/

19

Reflective Policy

e Table for policy (for table data)

create table userperms (
username varchar2(50),
a int references data);

* Populate the table:
insert into userperms values('BOB', 1);
insert into userperms values('ALICE', 1);
insert into userperms values('ALICE', 2);
commit;

Reflective Policy

create or replace function testFilter(
p_schema varchar2, p_obj varchar2)

return varchar2 as
begin
return 'a in (select a from alice.userperms
'where username = "'’
SYS CONTEXT('userenv', 'SESSION USER")

S

end;

21

Fine-Grained Access Control

* Predicated grants

grant select on employee
where (empid = userId())
to public

* VPD through app server filtering?
— http://mattfleming.com/node/243

BEYOND ACCESS CONTROL

Trojan Horse

ACL
Ar
A:w

Principal B cannot read file F

Trojan Horse

Principal A ACL

\executes

Program Goodies

Ar
A:w

write Aw

Trojan Horse

Principal B can read contents of file F copied to file G

MLS (Bell-Lapadula)

Lo (President)=Classified

Declassification: Intentional Leaks

Tax Data|— — — »

Final Tax Form

explicit
release

Proprietary |
Database -

27

Multi-Level and Multi-Lateral

(TOP SECRET, {EUR,ASI,NUC})

(TOP SECRET, {EUR}) (SECRET, {EUR,ASI,NUC})

(TOP SECRET, {}) (SECRET, {EUR})

(SECRET, {})

(UNCLASSIFIED, {})

Clark-Wilson

* Principles for data integrity

— Only access data through well-formed transactions

e E.g. double-entry book-keeping (financial)
* E.g. audit log (HPPA)

— Separation of duties

* Policy triples (S, TP, CDI)
— S = subject
— TP = transformation procedure
— CDI = constrained data item

BMA Security Model

e Decentralized

— Patient record = the maximum set of health
information with a single access control list

— “Peer-to-peer” alternative to centralized
databases

BMA Principle #1

 Access Control

— Each identifiable record is marked with an ACL

naming the people or groups of people who may
read it and append data to it

e — 2/

Genensi | Maraged By | Otyect Securty | COM. | Gose Potey |

oup or user names

-

] iccourt Oparaton (BFE\ Accsurt Qpeesten
e —
mk:-—-: =]

L1

il

38 &

T x
k ¢
1

moopaon
oooooo|f [¥
P Y

&
¥
;i
i
§
3
3
iz L
3
3
& 4

BMA Principle #2

* Record Opening

— Clinician can open a record with herself and
patient on the ACL.

— Where patient referred, can open record with
herself, patient and referring clinician on ACL

Genensi | Maraged By | Oyt Securty | COM. | G Pobey |

11

goapao|f
opoooo|f
\ a

e

§

%
§
]

R fEE
] 2
$ =
$ 3
g ;
7 oo
3 e

BMA Principle #3

* Designated Control

— One of the clinicians on the ACL must be marked
as being responsible

— Only she may alter the ACL
— Only health professionals should be added to ACL

1
Genens | Maraged By | Otject. Securty | COMe | Groce Poiey |
Group o user names -
t Qpesstons - - f
(44 E toes) £
Adrire EFE
‘e-»'”r-.:‘ '. _.: —]
Add Bermcve
Parmasors for Admirssteston How Dery
oz o 0o =
a o
o
Ryects o
ot Ryects D D
ey rt Set of Polcyflogong o -
for advanced A '
Mypgdmw for advarced wetngs Adyarced
ok | Cwen | |

BMA Principle #4

* Consent and notification
— Responsible clinician must notify the patient

e of the names on his record’s ACL when it is opened,
 of all additions to ACL and
* whenever responsibility is transferred

1/
Genens | Maraged 8 | Oyt Securty | COMe | G Potey |

(3roup o user names

BMA Policy

Access control
Record opening |
Designated control s
Consent and notification
Persistence

Attribution -
Information flow
Aggregation control
Trusted computing base

Relationship-Based Access Control
(ReBAC)

e RBAC: Policies are sets
— “Who are you?”

e ReBAC: Policies are relations
— “Who do you know?”

* Scenario: Temporary access for consultation

Type Enforcement (SELinux)

ermissio
ssignmen

o

Type \

(Subject)

Type
(Object)

Subject type can access object
type to perform operations on

objects

o

Type Enforcement Access Control

* All accesses must be explicitly granted in policy

e “Allow” rules specify:
— Source type (domain type of process)
— Target type (object type being accessed)
— Object class

— Permissions

 Example: |
allow user_t bin_t : file {read

Domain Transitions

* Principle of Least Privilege:

— Any process must be able to access only such

information and resources that are necessary to

its legitimate purpose. B ——

shadow_t:
file { ... write ...}

Program: passwd

Object: /etc/shadow
Program: bash

Conclusions

e Security is hard

