Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 5 Next »

The Easiest way to have the PLIR set up locally is by using Docker and Docker Compose 

See Docker Installation Instructions for your environment.  If running on Linux, check https://docs.docker.com/compose/install/ to install docker compose.

Checkout  this git-repo  for a fully pre-configured Dockerized PLIR set up and follow the instruction below

  1. Clone the Repository locally 

    git clone https://github.com/mozzy11/PLIR-Dockerized-Setup.git
    
    
  2.  Move to the project root directory and Spin Up the pre-configured OpenMRS ,OpenHIM and Hapi-Fhir instances .

    docker-compose up
  3. You should be able to acces the OpenMRS ,OpenHIM and Hapi-Fhir instances  at the following urls

    InstanceURLcredentials (user : password)
    OpenMRShttp://localhost:8080/openmrs    admin : Admin123
    OpenHIM http://localhost:9000 root@openhim.org : openhim-password
    Hapi FHirhttp://localhost:8090

     hapi : hapi123

    After Logging into OpenHIM  (see more ), Import the Config inside the Config folder ie    config/openhim-config.json 
    Note that the OpenMRS Instance above is pre-loaded with CIEL and comes with a sample form (TX_PVLS form) to collect TX_PVLS specific data

  4. Load the necesary TX_PVLS Measure and Library Resources into the Hapi FHir  . see how to load the Resources into Hapi Fhir .

  5. Spin up the streaming-debezium pipeline  . 
    docker-compose -f pipeline-compose.yml up
    

    Note that you run the above command from the root directory of the cloned repository.

  6.  You can use the TX_PVLS form pre-loaded in the OpenMRS instance to capture TX_PVLS specific data

  7. The running Pipeline will listen to any  any data changes  added in to OpenMRS and route them to the FHIR server through OpenHIM.
  8.  See here how to invoke the evaluate-measure and collect-dataoperation to generate the releveant Dataset for TX_PVLS and the actaul indicator calculation based on CQL evaluation
  • No labels